• Title/Summary/Keyword: Lead-acid battery

Search Result 162, Processing Time 0.031 seconds

Effects of Alloying Elements on the Surface Characteristics of Pb-Substrate for Battery (Pb-기판의 표면특성에 미치는 합금원소의 영향)

  • Oh, S.W.;Choe, H.C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.6
    • /
    • pp.302-311
    • /
    • 2006
  • Nowadays the open-type lead-acid battery for vehicle use is being replaced with the sealed-type because it needs no maintenance and has a longer cycle life. Thus researches on this battery are being conducted very actively by many advanced battery companies. There is, however, a serious problem with the maintenance free(MF) battery that its cathode electrode has a limited cycle life due to a corrosion of grid. In this study, it was aimed to improve a corrosion resistance of the cathode grid which is commonly made of Pb-Ca alloy for a mechanical strength. For this purpose, various amounts of alloying elements such as Sn, Ag and Ba were added singly or together to the Pb-Ca alloys and investigated their corrosion behaviors. Batteries fabricated by using these alloys as cathode grids were subjected to life cycle test and their corrosion layers appeared at the interface between the grids and the active materials were carefully observed in order to clarify effects of alloying elements.

State Estimation Technique for VRLA Batteries for Automotive Applications

  • Duong, Van Huan;Tran, Ngoc Tham;Choi, Woojin;Kim, Dae-Wook
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.238-248
    • /
    • 2016
  • The state-of-charge (SOC) and state-of-health (SOH) estimation of batteries play important roles in managing batteries for automotive applications. However, an accurate state estimation of a battery is difficult to achieve because of certain factors, such as measurement noise, highly nonlinear characteristics, strong hysteresis phenomenon, and diffusion effect of batteries. In certain vehicular applications, such as idle stop-start systems (ISSs), significant errors in SOC/SOH estimation may lead to a failure in restarting a combustion engine after the shut-off period of the engine when the vehicle is at rest, such as at a traffic light. In this paper, a dual extended Kalman filter algorithm with a dynamic equivalent circuit model of a lead-acid battery is proposed to deal with this problem. The proposed algorithm adopts a battery model by taking into account the hysteresis phenomenon, diffusion effect, and parameter variations for accurate state estimations of the battery. The validity of the proposed algorithm is verified through experiments by using an absorbed glass mat valve-regulated lead-acid battery and a battery sensor cable for commercial ISS vehicles.

A study on the change of air lead concentrations in lead-acid battery plants (축전지 사업장에서 공기 중 납 농도의 변화에 관한 연구)

  • Choi, Seung-Hyun;Kim, Nam-Soo;Kim, Jin-Ho;Cho, Kwang-Sung;Ham, Jung-O;Ahn, Kyu-Dong;Lee, Byung-Kook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.4
    • /
    • pp.261-271
    • /
    • 2007
  • To provide necessary information for future environmental monitoring of storage batteries in Korea, authors analyzed environmental monitoring dataset of air lead concentration of 12 storage battery industries measured during 1989-2006. We calculated geometric mean and standard deviation with minimum and maximum value of each year dataset. Air lead concentration data were analyzed according to year of measurement, type of grid manufacturing method (grid casting type or expander type), size of industries and type of operation (casting, lead powder & pasting, assembly and others). The geometric mean and standard deviation of all lead industries for overall 18 years were $72{\mu}g/m^3$ and 3.65 with minimum of $6{\mu}g/m^3$ and maximum of $7,956{\mu}g/m^3$. The geometric mean air lead concentrations of years between 1989-1999 were above the Korean PEL($50{\mu}g/m^3$), whereas those of years after year 2000 were below the Korean PEL showing 50% of it. The geometric mean concentration of air lead was significantly lower in expander method battery industries than that of grid method battery industries and was lower in large sized battery industries than small & medium sized ones throughout the whole 18 years period. The distributions of over PEL($50{\mu}g/m^3$) were decreased by the years of environmental monitoring and those were lower in expander method battery industries than grid method battery industries. The significant reduction of mean air lead concentration during last 10 years may be induced partly due to more active environmental engineering control and new introduction of new operation in grid method battery industries, but may be also influenced by non-engineering method such as reduction of operation hours or reduction of exposure time during actual environmental measurement by industrial hygienist which is not concrete evidence, but just circumstantial evidence.

THE SOC ESTIMATION OF THE LEAD-ACID BATTERY USING KALMAN FILTER

  • JEON, YONGHO
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.851-858
    • /
    • 2021
  • In general, secondary batteries are widely used as an electric energy source. Among them, the state of energy storage of mobile devices is very important information. As a method of estimating a state, there is a method of estimating the state by integrating the current according to an energy storage state of a battery, and a method of designing a state estimator by measuring a voltage and estimating a charge amount based on a battery model. In this study, we designed the state estimator using an extended Kalman filter to increase the precision of the state estimation of the charge amount by including the error of the system model and having the robustness to the noise.

Constant Current & Constant Voltage Battery Charger Using Buck Converter (벅 컨버터를 이용한 정전류 정전압 배터리 충전기)

  • Awasthi, Prakash;Kang, Seong-Gu;Kim, Jeong-Hun;Park, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.399-400
    • /
    • 2012
  • The proposed battery charger presented in this paper is suitable for Lead-Acid Battery and the dc/dc buck converter topology is applied as a charger circuit. The technique adopted in this charger is constant current & constant voltage dual mode, which is decided by the value of voltage of proposed battery. Automatic mode change function is detected by the percentage value of level of battery charging. CC Mode (Constant Current Mode) is operated when charging level is below 80% of the total charging of Battery voltage and above 80% of battery voltage charging, CV Mode (Constant Voltage Mode) is automatically operated. As the charging level exceeds 120%, it automatically terminates charging. The feedback signal to the PWM generator for charging the battery is controlled by using the current and voltage measurement circuits simultaneously. This technique will degrade the damage of proposed type of battery and improve the power efficiency of charger. Finally, a prototype charger circuit designed for a 12-V 7-Ah lead acid battery is constructed and tested to confirm the theoretical predictions. Satisfactory performance is obtained from simulation and the experimental results.

  • PDF

Performance Characteristics of Lead Acid Battery with the Contents of Sodium Perborate Tetrahydrate (SPT) in Positive Plate Active Material (과붕산나트륨 양극 활물질 첨가에 따른 차량용 납산배터리 성능 특성)

  • Lim, Tae Seop;Kim, Sung Jun;Kim, Sang Dong;Yang, SeungCheol;Jung, Yeon-Gil
    • Korean Journal of Materials Research
    • /
    • v.30 no.8
    • /
    • pp.426-434
    • /
    • 2020
  • The performance characteristics of a lead acid battery are investigated with the content of Sodium Perborate Tetrahydrate (SPT, NaBO3·4H2O) in a positive plate active material. SPT, which reacts with water to form hydrogen peroxide, is applied as an additive in the positive plate active material to increase adhesion between the substrate (positive plate) and the active material; this phenomenon is caused by a chemical reaction on the surface of substrate. A positive plate with the increasing content of SPT is prepared to compare its properties. It is confirmed that the oxide layer increases at the interface between the substrate and the active material with increasing content of SPT; this is proven to be an oxide layer through EDS analysis. Battery performance is confirmed: when SPT content is 2.0 wt%, the charging acceptance and high rate discharge properties are improved. In addition, the lifetime performance according to the Standard of Battery Association of Japan (SBA) S0101 test is improved with increasing content of SPT.

Study on Charging Pattern of lead-acid Battery for Micro-Source (마이크로 전원에의 적용을 위한 연축전지 충전 패턴에 관한 기초 연구)

  • Kim, Sung-Hyun;Lee, Kye-B.;Son, Kwang-M.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.494-495
    • /
    • 2008
  • This paper shows the IUIa charging characteristics of charging pattern for industrial lead-acid battery. PSCAD/EMTDC simulation model is developed for studying the IUIa charging characteristics for micro-source, and control the charging current and charging voltage for each section of IUIa charging pattern.

  • PDF

Design and Experiment of Three-phase Interleaved DC-DC Converter for 5kW Lead-Acid Battery Charger (5kW 배터리 충전기용 양방향 3상 인터리브드 DC-DC 컨버터 설계 및 실험)

  • Lee, Wu-Jong;Eom, Ju-Kyoung;Han, Byung-Moon;Cha, Han-Ju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.227-233
    • /
    • 2011
  • This paper proposes a design and experiment of three phase interleaved dc-dc converter for 5kW battery charger. The charger consists of a three-phase interleaved dc-dc converter, which interfaces batteries and DC link, and a grid connected inverter. Lead-acid battery is modeled in a simple R-C model by matlab. Parameters of the battery are estimated based on step current discharging test. The battery is connected to three-phase interleaved DC-DC converter in order to reduce the ripple current to the battery and so, increase the lifetime of battery. Controller for charging and discharging mode is designed and tested in a 5kW charger prototype.

A Study on a Combined DMFC-Lithium Battery Hybrid System for a Forklift (지게차용 DMFC와 리튬배터리 하이브리드시스템의 혼합 적용에 대한 연구)

  • Ju, Yong-Soo;Lim, Dong-Jin;Kim, Hong-Gun;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.57-65
    • /
    • 2021
  • This paper explains a DMFC-Lithium Battery hybrid system applied to a forklift. A conventional Lead Acid battery forklift has several problems: long charging times, short operation times, and frequent battery replacements. As a result, hydrogen-powered forklifts are replacing Lead acid battery-powered forklifts due to their shorter refueling time and longer operation times. However, in doing so, we are confronted with the problem of a high hydrogen refueling infrastructure. A Direct Methanol Fuel Cell (DMFC), on the other hand, is an eco-friendly generator that directly converts the chemical energy of methanol into electricity. In general, DMFC is regarded as a small power generator under kW power. In this paper, a DMFC-Battery hybrid system is applied to a 1.5 ton forklift by increasing the power output of the DMFC stack and utilizing the high charge-discharge characteristics of a lithium battery.

A Study on the Valve Regulated Lead-Acid Battery using Sulfuric Acid Gel Electrolyte for New Generation Substitution Energy (황산 겔 전해질을 사용한 차세대 대체에너지용 밀폐형 납축전지에 관한 연구)

  • Park, Keun-Ho;Ju, Chan-Hong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.164-173
    • /
    • 2004
  • The capacity and long life of gel electrolyte batteries is connected with gas recombination producting $PbO_2$ and Pb electrode. We prepared with sulfuric acid gel electrolyte to know gel characteristics per density to assemble valve regulated lead-acid (VRLA) batteries. We studied on actions of sulphuric acid gel electrolyte by measuring electrolyte dispersion using Brewster-angle microscope (BAM), charge-discharge cycle, and electrode structure using scanning election microscope (SEM). Sulphuric acid density 1.210 showed excellent gel dispersion in sol condition, electrode condition after fifty cycles in this study.