• Title/Summary/Keyword: Lead zirconate titanate

Search Result 127, Processing Time 0.028 seconds

Vibration Control of Beam Containing ER Fluid Using PPF Control Scheme (PPF 제어기법을 적용한 전기점성유체가 함유된 보의 진동제어)

  • Yun Shin-Il;Chin Do-Hun;Yoon Moon-Chul
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.32-37
    • /
    • 2005
  • Several types of smart materials and control scheme are available to adjust the structure actively in various external disturbances. A control scheme was introduced for a specific material. But the effectiveness of the control scheme has some limitation according to the choice of the smart materials and the response of the structure. The ER(Electrorheological) fluid is adequate for a large control force, and the PZT(lead zirconate titanate) patches are suitable for small but arbitrary control force at any point of the structure. It can be used for active control of structure by changing the dynamic characteristics of the structure. But it has some difficulty in suppressing the excited vibration in broad band. To compensate this resonance of the controlled structure, a hybrid controller was constructed using PPF(Positive position feedback) control with PZT and ER fluid control.

a study on the Electrical and acoustical properties of PZT ceramic. (PZT 계 압전세라믹스의 전기 및 음향특성에 관한 연구)

  • Kim, S.J.;Kim, H.G.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.333-334
    • /
    • 1989
  • Electrically active part of the piezoelectric sound element is a ceramic thin circular disk cemented to a metal base plate (using a type of thermosetting epoxy). The active part is a thin lead zirconate titanate disk (PZT). The piezoelectric sound element is so dimensioned that its basic resonance frequency is approximately if the center of the audible frequency band: This frequency is mainly determined by the geometry and the sort of the metal base plate materials. In this study, four kinds of PZT ceramic and two classes of thin metal base plate were prepared. It is observed that dielectric and pizoelectric properties relate to acoustical properties (particularly sound pressure level).

  • PDF

Step-Down Voltage Properties of Piezoelectric Transformer with Extensional Vibration Mode (Extensional 진동 모드를 이용한 압전 트랜스포머의 감압 특성)

  • Choi, Ji-Hyun;Bang, Kyu-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.652-655
    • /
    • 2003
  • In this paper, step-down piezoelectric transformer is studied. The piezoelectric transformer, made of lead zirconate titanate solid solution ceramic, is operated by a fundamental contour-extensional vibration mode. The transformer of 14mm length, 14mm width and 4.5mm thickness was made up two shape(Type I and II). The resonant frequency (fr) is 144kHz and 128kHz at the load resistant of $7.5{\Omega}$ that is a similar to calculating matching impedance. The gain (G) obtained 0.19 and 0.08 at each resonant frequency, when applied input voltage is 25V. The temperature difference with the variation of load resistant was increased with increasing load resistant and was the lowest at $7.5{\Omega}$ near the matching of output impedance.

  • PDF

Measurement of the Pockels Coefficient of PZT Thin Films Using a Two-beam Polarization Interferometer with a Reflection Configuration

  • Spirin, Vasilii;Lee, Changho;No, Kwangsoo
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.409-413
    • /
    • 1999
  • A two-beam polarization (TBP) interfermeter with a reflection configuration for measuring the linear electroptic coefficient is described and investigated experimentally and theoretically. It is shown that a TBP interferometer can be used for measuring the Pockels coefficient of thin film with a strong Fabry-Perot effect. The TBP interferometer technique is used to measure the effective differential linear electro-optic coefficient $re=r_{33}-(n_0/n_0)^3r_{13}$of lead zirconate titanate (PZT) thin film. The results are in agreement with known data.

  • PDF

Simultaneous active strain and ultrasonic measurement using fiber acoustic wave piezoelectric transducers

  • Lee, J.R.;Park, C.Y.;Kong, C.W.
    • Smart Structures and Systems
    • /
    • v.11 no.2
    • /
    • pp.185-197
    • /
    • 2013
  • We developed a simultaneous strain measurement and damage detection technique using a pair of surface-mounted piezoelectric transducers and a fiber connecting them. This is a novel sensor configuration of the fiber acoustic wave (FAW) piezoelectric transducer. In this study, lead-zirconate-titanate (PZT) transducers are installed conventionally on a plate's surface, which is a technique used in many structural health monitoring studies. However, our PZTs are also connected with an optical fiber. A FAW and Lamb wave are simultaneously guided in the optical fiber and the structure, respectively. The dependency of the time-of-flight of the FAW on the applied strain is quantified for strain sensing. In our experimental results, the FAW exhibited excellent linear behavior and no hysteresis with respect to the change in strain. On the other hand, the well-known damage detection function of the surface-mounted PZT transducers was still available by monitoring the waveform change in the conventional Lamb wave ultrasonic path.

Preparation and Characterization of Screen-printed Lead Zirconate Titanate Thick Films

  • Lee Sung-Gap
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.2
    • /
    • pp.72-75
    • /
    • 2006
  • Ferroelectric PZT heterolayered thick films were fabricated by the alkoxide-based sol-gel method. PZT(Zr/Ti=60/40) paste was made and alternately screen-printed on the $Al_2O_3$ substrates. We have introduced a press-treatment to obtain a good densification of screen printed films. The porosity of the thick films was decreased with increasing the applied pressure and the thick films pressed at $0.6ton/cm^2$ showed the dense microstructure and thickness of about $76{\mu}m$. The relative dielectric constant increased with increasing the applied pressure. The remanent polarization and coercive field increased with increasing applied pressure and the values for the PZT thick films pressed at $0.6ton/cm^2$ were $16.6{\mu}C/cm^2$, 76.9 kV/cm, respectively.

Fabrication and Characteristic Analysis of Piezoelectric Micro-Transformer (초소형 마이크로 압전변압기 제작 및 특성 분석)

  • Kim Seong-Kon;Seo Young-Ho;Choi Doo-Sun;Whang Kyung-Hyun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.469-470
    • /
    • 2006
  • Piezoelectric transformers based on lead zirconate titanate(PZT) have been received considerable interest because of their wide potential applications in transformer, oscillator, resonance sensor, actuator, acoustic transducer, as well as active slider for hard disk drives. However, for the applications which need a small power supply such as thin and flat displays, micro-robot, micro-system, it is especially necessary to integrate the passive components because they typically need more than 2/3 of the space of the conventional circuit. So, we have fabricated the piezoelectric micro-transformer to supply energy for micro-systems using PZT thin films and MEMS technologies.

  • PDF

Piezoelectric Composites of PZT/polymer for Ultrasonic Transducer Applications (초음파 변환기 응용을 위한 PZT/고분자 압전복합재료)

  • Kim, Jin-Soo;Kim, Yong-Huck;Kim, Ho-Gi;Lee, Deok-Chool
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.802-805
    • /
    • 1988
  • The objective of the present study was to manufacture the piezoelectric composites of Lead Zirconate Titanate (PZT) - polymer for applications such as ultrasonic medical diagnosis and hydrophone. The PZT rod-polymer composites have been prepared with 4.5 to 57 volume percent PZT using 1.5 mm rod, so the connectivity pattern of the two phase is 1-3 type. The electromechanical coupling factors of radial mode ($k_{p}$) and thickness mode ($k_{t}$) were nearly independent of the volume percent PZT, which were 0.3 and 0.65, respectively. The acoustic impedance of the piezoelectric composites was measured by the resonance technique in the frequency range 50 KHz-1.5 MHz, which was in the range of 3.8 - 60 Mrayl.

  • PDF

X-ray and Plasma Process Induced Damages to PLZT Capacitor Characteristics for DRAM Applications

  • Kim, Jiyoung
    • The Korean Journal of Ceramics
    • /
    • v.3 no.3
    • /
    • pp.213-217
    • /
    • 1997
  • In this paper, the imparct of X-ray and plasma process-induced-damages to La doped Lead Zirconate Titanate (PLZT, (Pb1-xLa)(Zr0.5Ti0.5)O3) capacitor characteristics have been investigated from the viewpoint of gigabit scale dynamic random access memory (DRAM) applications. Plamsa damage causes asymmetric degradation on hysteresis characteristics of PLZT films. On the other hand, X-ray damage results in a symmetrical reduction of charge storage densities (Qc's) for both polarities. As La concentration increases in the films, the radiation hardness of PLZT films on X-ray and plasma exposures is improved. It is observed that the damaged devices are fully recovered by thermal annealing under oxygen ambient.

  • PDF

Modal Strain Energy-based Damage Detection in Beam Structures using Three Different Sensor Types (보구조물의 모드변형에너지기반 손상 검색: 3가지 타입 센서의 비교)

  • Ho, Duc-Duy;Hong, Dong-Soo;Kim, Jeong-Tae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.680-683
    • /
    • 2011
  • This study deals with damage detection in beam structure by using modal strain energy-based technique with three different sensor types: accelerometer, lead zirconate titanate (PZT) piezoelectric sensor and electrical strain gage. First, the use of direct piezoelectric effect of PZT sensor for dynamic strain response are presented. Next, a modal strain energy-based damage detection method is outlined. For validation, forced vibration tests are carried out on lab-scale aluminum cantilever beam. The dynamic responses are measured for several damage scenarios. Based on damage localization results, the performance of three different sensor types is evaluated.

  • PDF