• Title/Summary/Keyword: Lead zirconate titanate

Search Result 127, Processing Time 0.021 seconds

Monitoring moisture content of timber structures using PZT-enabled sensing and machine learning

  • Chen, Lin;Xiong, Haibei;He, Yufeng;Li, Xiuquan;Kong, Qingzhao
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.589-598
    • /
    • 2022
  • Timber structures are susceptible to structural damages caused by variations in moisture content (MC), inducing severe durability deterioration and safety issues. Therefore, it is of great significance to detect MC levels in timber structures. Compared to current methods for timber MC detection, which are time-consuming and require bulky equipment deployment, Lead Zirconate Titanate (PZT)-enabled stress wave sensing combined with statistic machine learning classification proposed in this paper show the advantage of the portable device and ease of operation. First, stress wave signals from different MC cases are excited and received by PZT sensors through active sensing. Subsequently, two non-baseline features are extracted from these stress wave signals. Finally, these features are fed to a statistic machine learning classifier (i.e., naïve Bayesian classification) to achieve MC detection of timber structures. Numerical simulations validate the feasibility of PZT-enabled sensing to perceive MC variations. Tests referring to five MC cases are conducted to verify the effectiveness of the proposed method. Results present high accuracy for timber MC detection, showing a great potential to conduct rapid and long-term monitoring of the MC level of timber structures in future field applications.

Electrical properties of PZN-PZT thick films formed by aerosol deposition process (에어로졸 증착법에 의해 제조된 PZN-PZT 후막의 전기적특성)

  • Tungalaltamir, Ochirkhuyag;Jang, Joo-Hee;Park, Yoon-Soo;Park, Dong-Soo;Park, Chan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.5
    • /
    • pp.183-188
    • /
    • 2020
  • Lead zinc niobate (PZN)-added lead zirconate titanate (PZT) thick films with thickness of 5~10 ㎛ were fabricated on silicon and sapphire substrates using aerosol deposition method. The contents of PZN were varied from 0 %, 20 % and to 40 %. The PZN-added PZT film showed poorer electrical properties than pure PZT film when the films were coated on silicon substrate and annealed at 700℃. On the other hand, the PZN-added PZT film showed higher remanent polarization and dielectric constant values than pure PZT film when the films were coated on sapphire and annealed at 900℃. The ferroelectric and dielectric characteristics of 20 % PZN-added PZT films annealed at 900℃ were compared with the result values obtained from bulk ceramic specimen with same composition sintered at 1200℃. As annealing temperature increased, dielectric constant increased. These came from enhanced crystallization and grain growth by post heat treatment.

Effect of PZN addition on microstructure of PZT thick films by aerosol deposition process (에어로졸 증착법에 의한 PZT 후막의 미세구조에 미치는 PZN 첨가의 영향)

  • Jang, Joo-Hee;Park, Yoon-Soo;Park, Dong-Soo;Park, Chan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.1
    • /
    • pp.14-20
    • /
    • 2018
  • Lead zinc niobate (PZN) added lead zirconate titanate (PZT) thick films with thickness of $5{\sim}10{\mu}m$ were fabricated on silicon and sapphire substrates using aerosol deposition method. The contents of PZN were varied from 0 %, 20 % and 40 %. The initial particles (PZT, 2PZN-8PZT, 4PZN-6PZT) had irregular shape and submicron sizes. The as-deposited film had fairly dense microstructure without any crack, and showed only a perovskite single phase formed with nano-sized grains. The as-deposited films on silicon were annealed at the temperatures of $700^{\circ}C$, and the films deposited on sapphire were annealed at $900^{\circ}C$ in the electrical furnace. The effects of PZN addition on the microstructural evolution were observed using by FE-SEM and HR-TEM.

Sintering and Microstructure of PZT Ceramics Prepared from Nanoparticles by Sol-Gel Process (나노 입자를 이용한 PZT 압전 세라믹스의 소결 및 미세구조)

  • Park Yong-Kap
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.6
    • /
    • pp.457-460
    • /
    • 2005
  • Nano-sized titanium oxide and zirconium oxide powders were synthesized by hydrolysis of titanium isopropoxide $[Ti(OC_3H7)_4]$ and zirconium tetrachloride ($ZrC1_4$) via a sol-gel technique. Lead titanate powders were prepared by mixing $TiO_2$ precursors with PbO slurry made with dilute $NH_4OH$. Lead zirconate titanate powders were, then, synthesized by mixing $PbTiO_3$ with $ZrO_2$ powders. The goal of this research was to obtain the $PbZrTiO_3(PZT)$ powders and sintering these powders at low temperature. The $PbTiO_3$ and PZT powders after firing were analyzed by X-ray diffraction(XRD) and transmission electron microscopy(TEM) was utilized to observe the shape and size of the synthesized nano-particles. In the XRD pattern, the well-crystallized PZT phase could be obtained in consequence of firing at $900^{\circ}C$. SEM micrographs also showed that grains of PZT were relatively well grown with the size of the range of $2{\~}4{\mu}m$. The densified perovskite structure of $PbZrTiO_3$ could be obtained by sintering at temperature as low as $900^{\circ}C$. Characterization of the samples showed improved piezoelectric properties.

  • PDF

Piezoelectric nanocomposite sensors assembled using zinc oxide nanoparticles and poly(vinylidene fluoride)

  • Dodds, John S.;Meyers, Frederick N.;Loh, Kenneth J.
    • Smart Structures and Systems
    • /
    • v.12 no.1
    • /
    • pp.55-71
    • /
    • 2013
  • Structural health monitoring (SHM) is vital for detecting the onset of damage and for preventing catastrophic failure of civil infrastructure systems. In particular, piezoelectric transducers have the ability to excite and actively interrogate structures (e.g., using surface waves) while measuring their response for sensing and damage detection. In fact, piezoelectric transducers such as lead zirconate titanate (PZT) and poly(vinylidene fluoride) (PVDF) have been used for various laboratory/field tests and possess significant advantages as compared to visual inspection and vibration-based methods, to name a few. However, PZTs are inherently brittle, and PVDF films do not possess high piezoelectricity, thereby limiting each of these devices to certain specific applications. The objective of this study is to design, characterize, and validate piezoelectric nanocomposites consisting of zinc oxide (ZnO) nanoparticles assembled in a PVDF copolymer matrix for sensing and SHM applications. These films provide greater mechanical flexibility as compared to PZTs, yet possess enhanced piezoelectricity as compared to pristine PVDF copolymers. This study started with spin coating dispersed ZnO- and PVDF-TrFE-based solutions to fabricate the piezoelectric nanocomposites. The concentration of ZnO nanoparticles was varied from 0 to 20 wt.% (in 5 % increments) to determine their influence on bulk film piezoelectricity. Second, their electric polarization responses were obtained for quantifying thin film remnant polarization, which is directly correlated to piezoelectricity. Based on these results, the films were poled (at 50 $MV-m^{-1}$) to permanently align their electrical domains and to enhance their bulk film piezoelectricity. Then, a series of hammer impact tests were conducted, and the voltage generated by poled ZnO-based thin films was compared to commercially poled PVDF copolymer thin films. The hammer impact tests showed comparable results between the prototype and commercial samples, and increasing ZnO content provided enhanced piezoelectric performance. Lastly, the films were further validated for sensing using different energy levels of hammer impact, different distances between the impact locations and the film electrodes, and cantilever free vibration testing for dynamic strain sensing.

Structural health monitoring of seismically vulnerable RC frames under lateral cyclic loading

  • Chalioris, Constantin E.;Voutetaki, Maristella E.;Liolios, Angelos A.
    • Earthquakes and Structures
    • /
    • v.19 no.1
    • /
    • pp.29-44
    • /
    • 2020
  • The effectiveness and the sensitivity of a Wireless impedance/Admittance Monitoring System (WiAMS) for the prompt damage diagnosis of two single-storey single-span Reinforced Concrete (RC) frames under cyclic loading is experimentally investigated. The geometrical and the reinforcement characteristics of the RC structural members of the frames represent typical old RC frame structure without consideration of seismic design criteria. The columns of the frames are vulnerable to shear failure under lateral load due to their low height-to-depth ratio and insufficient transverse reinforcement. The proposed Structural Health Monitoring (SHM) system comprises of specially manufactured autonomous portable devices that acquire the in-situ voltage frequency responses of a network of twenty piezoelectric transducers mounted to the RC frames. Measurements of external and internal small-sized piezoelectric patches are utilized for damage localization and assessment at various and increased damage levels as the magnitude of the imposed lateral cycle deformations increases. A bare RC frame and a strengthened one using a pair of steel crossed tension-ties (X-bracing) have been tested in order to check the sensitivity of the developed WiAMS in different structural conditions since crack propagation, damage locations and failure mode of the examined frames vary. Indeed, the imposed loading caused brittle shear failure to the column of the bare frame and the formation of plastic hinges at the beam ends of the X-braced frame. Test results highlighted the ability of the proposed SHM to identify incipient damages due to concrete cracking and steel yielding since promising early indication of the forthcoming critical failures before any visible sign has been obtained.

Wave propagation simulation and its wavelet package analysis for debonding detection of circular CFST members

  • Xu, Bin;Chen, Hongbing;Xia, Song
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.181-194
    • /
    • 2017
  • In order to investigate the interface debonding defects detection mechanism between steel tube and concrete core of concrete-filled steel tubes (CFSTs), multi-physical fields coupling finite element models constituted of a surface mounted Piezoceramic Lead Zirconate Titanate (PZT) actuator, an embedded PZT sensor and a circular cross section of CFST column are established. The stress wave initiation and propagation induced by the PZT actuator under sinusoidal and sweep frequency excitations are simulated with a two dimensional (2D) plain strain analysis and the difference of stress wave fields close to the interface debonding defect and within the cross section of the CFST members without and with debonding defects are compared in time domain. The linearity and stability of the embedded PZT response under sinusoidal signals with different frequencies and amplitudes are validated. The relationship between the amplitudes of stress wave and the measurement distances in a healthy CFST cross section is also studied. Meanwhile, the responses of PZT sensor under both sinusoidal and sweep frequency excitations are compared and the influence of debonding defect depth and length on the output voltage is also illustrated. The results show the output voltage signal amplitude and head wave arriving time are affected significantly by debonding defects. Moreover, the measurement of PZT sensor is sensitive to the initiation of interface debonding defects. Furthermore, wavelet packet analysis on the voltage signal under sweep frequency excitations is carried out and a normalized wavelet packet energy index (NWPEI) is defined to identify the interfacial debonding. The value of NWPEI attenuates with the increase in the dimension of debonding defects. The results help understand the debonding defects detection mechanism for circular CFST members with PZT technique.

Electrical properties of piezoelectric PZT thick film by aerosol deposition method (에어로졸 증착법에 의한 압전 PZT 후막의 전기적 특성)

  • Kim, Ki-Hoon;Bang, Kook-Soo;Park, Dong-Soo;Park, Chan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.239-244
    • /
    • 2015
  • Lead zirconate titanate (PZT) thick films with thickness of $10{\sim}20{\mu}m$ were fabricated on silicon substrate by aerosol deposition method. As-deposited films on silicon were annealed at the temperatures of $700^{\circ}C$. The electrical properties of films deposited by PZT powders were characterized using impedance analyzer and Sawyer-Tower circuit. The PZT powder was prepared by both conventional solid reaction process and sol-gel process. The remanent polarization, coercive field, and dielectric constant of the $10{\mu}m$ thick film with solid reaction process were $20{\mu}C/cm^2$, 30 kV/cm and 1320, respectively. On the other hand, the PZT films by sol-gel process showed a poor dielectric constant of 635. The reason was probably due to the presence of pores produced from organic residue during annealing.

DLC Structure Layer for Piezoelectric MEMS Switch (압전 MEMS 스위치 구현을 위한 DLC 구조층에 관한 연구)

  • Hwang, Hyun-Suk;Lee, Kyong-Gun;Yu, Young-Sik;Lim, Yun-Sik;Song, Woo-Chang
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.28-31
    • /
    • 2011
  • In this paper, a new set of structural and sacrificial material that is diamond like carbon (DLC)/photoresist for high performance piezoelectric RF-MEMS switches which are actuated in d33 mode is suggested. To avoid curing problem of photoresist sacrificial layer, DLC structure layer is deposited at room temperature by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) method. And lead zirconate titanate (PZT) piezoelectric layer is deposited on structure layer directly at room temperature by rf magnetron sputtering system and crystallized by rapid thermal annealing (RTA) equipment. Particular attention is paid to the annealing of PZT film in order to crystallize into perovskite and the variation of mechanical properties of DLC layer as a function of annealing temperature. The DLC layer shows good performance for structure layer in aspect to Young's modulus and hardness. The fabrication becomes much simpler and cheaper with use of a photoresist.

Simulation of PZT monitoring of reinforced concrete beams retrofitted with CFRP

  • Providakis, C.P.;Triantafillou, T.C.;Karabalis, D.;Papanicolaou, A.;Stefanaki, K.;Tsantilis, A.;Tzoura, E.
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.811-830
    • /
    • 2014
  • A numerical study has been carried out to simulate an innovative monitoring procedure to detect and localize damage in reinforced concrete beams retrofitted with carbon fiber reinforced polymer (CFRP) unidirectional laminates. The main novelty of the present simulation is its ability to conduct the electromechanical admittance monitoring technique by considerably compressing the amount of data required for damage detection and localization. A FEM simulation of electromechanical admittance-based sensing technique was employed by applying lead zirconate titanate (PZT) transducers to acquire impedance spectrum signatures. Response surface methodology (RSM) is finally adopted as a tool for solving inverse problems to estimate the location and size of damaged areas from the relationship between damage and electromechanical admittance changes computed at PZT transducer surfaces. This statistical metamodel technique allows polynomial models to be produced without requiring complicated modeling or numerous data sets after the generation of damage, leading to considerably lower cost of creating diagnostic database. Finally, a numerical example is carried out regarding a steel-reinforced concrete (RC) beam model monotonically loaded up to its failure which is also retrofitted by a CFRP laminate to verify the validity of the present metamodeling monitoring technique. The load-carrying capacity of concrete is predicted in the present paper by utilizing an Ottosen-type failure surface in order to better take into account the passive confinement behavior of retrofitted concrete material under the application of FRP laminate.