• Title/Summary/Keyword: Lead plating

Search Result 61, Processing Time 0.022 seconds

A Study on the Large Deflection Behavior of Ship Plate with Secondary Buckling (2차좌굴을 포함하는 선체판의 대변형거동에 관한 연구)

  • 고재용
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.565-573
    • /
    • 1999
  • Hihg Tensile Steel enables to reduce the plate thickness comparing to the case when Mild Steel is used. From the economical view points this is very preferable since the reduction in the hull weight. however to use the High Tensile Steel effectively the plate thickness may become thin so that the occurrence of buckling is inevitable and design allowing plate buckling may be necessary. If the inplane stiffness of the plating decreases due to buckling the flexural rigidity of the cross sect6ion of a ship's hull also decreases. This may lead to excessive deflection of the hull girder under longitudinal bending. In these cases a precise estimation of plate's behavior after buckling is necessary and nonliner analysis of isolated and stiffened plates is required for structural sys-tem analysis. In this connection this paper discusses nonlinear behaviour of thin plate under thrust. Based on the analytical method elastic large deflection analysis of isolated plate is perform and simple expression are derived to evaluated the inplane rigidity of plates subjected to uniaxial compression.

  • PDF

Study on the Manufacturing Techniques of Metallic Ornament of Treasure 930, the Staffs of Yi Gyeong-seok (보물 제930호 이경석 지팡이에 사용된 장석의 제작기법 고찰)

  • Lee, Jae-sung;Jeon, Ik-hwan
    • Journal of Conservation Science
    • /
    • v.31 no.3
    • /
    • pp.309-318
    • /
    • 2015
  • The staff given with chair to Yi Gyeong-seok, senior official over 70 years old by King Hyeonjong of Joseon Dynasty is representative handcraft of Joseon Dynasty. Results of analysis on the metallic decoration show that the metallic ornament of the end part which is connected to the spade was made by rolling of iron plate and brass plating. The plated part is limited to the ornament of the end part connected to the spade and the plating was not applied to the spade. Brass including 20% zinc was used for the connecting part of guard while brass gilded iron was used for the spade. This suggests that the tone of the connecting part of the guard and the spade was not different for reason of visual harmonization. Potential applied plating method can be amalgam, dippping in molten brass, and brushing but the analysis result suggests that dipping in molten brass method is the most likely accepted method. The brass guard of knife was joined by tin-lead solder. Rivet used to fix the blade was made by pure iron as an optimum material which satisfies flexibility and strength.

Gilt-bronze Standing Avalokiteshvara from Gyuam-ri, Buyeo: The Structure and Production Technique (부여 규암리 출토 금동관음보살 입상의 형상과 제작기법)

  • Shin, Yongbi;Kim, Jiho
    • Conservation Science in Museum
    • /
    • v.23
    • /
    • pp.1-16
    • /
    • 2020
  • In this paper, Gilt-bronze Standing Avaolkiteshvara (National Treasure No. 293, M355) excavated at Gyuam-ri in Buyeo was observed with a microscope to identify the production technique applied to it. It was also analyzed with XRF and hard X-ray to identify the composition and the surface treatment techniques and casting method applied. In this statue, Avalokiteshvara is standing upright on a lotus pedestal. The lotus designs on the pedestal and those on the shawl flowing down on both sides of the statue are characteristic of Buddhist statues from the seventh century or later. The use of supports to affix the outer and inner molds and traces of injected cast were observed in the interior of the pedestal. The blisters on the arms and pedestal created during the bronze casting indicate the use of lost-wax casting, which was popularly employed for the production of mid- or small-sized gilt-bronze Buddhist statues in ancient times. The composition analysis identified a copper-tin-lead ternary alloy in the interior of the statue that was conventional used in the sixth and seventh centuries. It is likely that this simple alloy was used to facilitate casting and produce clearer expressions of designs and ornaments on the statue. Mercury (Hg) was detected on the surface of the statue, indicating the use of amalgam-plating with gold (Au) dissolved in mercury. This plating method is a common surface treatment technique used for small gilt-bronze statutes in ancient Korea.

Behavior of Vibration Fracture for Sn-Ag-Cu-X Solders by Soldering (Sn-Ag-Cu-X 무연솔더로 솔더링 된 접합부의 진동파괴 거동)

  • Jin, Sang-Hun;Kang, Nam-Hyun;Cho, Kyung-Mox;Lee, Chang-Woo;Hong, Won-Sik
    • Journal of Welding and Joining
    • /
    • v.30 no.2
    • /
    • pp.65-69
    • /
    • 2012
  • Environmental and health concerns over the lead have led to investigation of the alternative Pb-free solders to replace commonly used Pb-Sn solders in microelectronic packaging application. The leading candidates for lead-free solder alloys are presently the near eutectic Sn-Ag-Cu alloys. Therefore, extensive studies on reliability related with the composition have been reported. However, the insufficient drop property of the near eutectic Sn-Ag-Cu alloys has demanded solder compositions of low Ag content. In addition, the solder interconnections in automobile applications like a smart box require significantly improved vibration resistance. Therefore, this study investigated the effect of alloying elements (Ag, Bi, In) on the vibration fatigue strength. The vibration fatigue was conducted in 10~1000Hz frequency and 20Grms. The interface of the as-soldered cross section close to the Cu pad indicated the intermetallic compound ($Cu_6Sn_5$) regardless of solder composition. The type and thickness of IMC was not significantly changed after the vibration test. It indicates that no thermal activities occurred significantly during vibration. Furthermore, as a function of alloying composition, the vibration crack path was investigated with a focus on the IMCs. Vibration crack was initiated from the fillet surface of the heel for QFP parts and from the plating layer of chip parts. Regardless of the solder composition, the crack during a vibration test was propagated as same as that during a thermal fatigue test.

Purification process and reduction of heavy metals from industrial wastewater via synthesized nanoparticle for water supply in swimming/water sport

  • Leiming Fu;Junlong Li;Jianming Yang;Yutao Liu;Chunxia He;Yifei Chen
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.441-449
    • /
    • 2023
  • Heavy metals, widely present in the environment, have become significant pollutants due to their excessive use in industries and technology. Their non-degradable nature poses a persistent environmental problem, leading to potential acute or chronic poisoning from prolonged exposure. Recent research has focused on separating heavy metals, particularly from industrial and mining sources. Industries such as metal plating, mining operations, tanning, wood and chipboard production, industrial paint and textile manufacturing, as well as oil refining, are major contributors of heavy metals in water sources. Therefore, removing heavy metals from water is crucial, especially for safe water supply in swimming and water sports. Iron oxide nanoparticles have proven to be highly effective adsorbents for water contaminants, and efforts have been made to enhance their efficiency and absorption capabilities through surface modifications. Nanoparticles synthesized using plant extracts can effectively bind with heavy metal ions by modifying the nanoparticle surface with plant components, thereby increasing the efficiency of heavy metal removal. This study focuses on removing lead from industrial wastewater using environmentally friendly, cost-effective iron nanoparticles synthesized with Genovese basil extract. The synthesis of nanoparticles is confirmed through analysis using Transmission Electron Microscope (TEM) and X-ray diffraction, validating their spherical shape and nanometer-scale dimensions. The method used in this study has a low detection limit of 0.031 ppm for measuring lead concentration, making it suitable for ensuring water safety in swimming and water sports.

Wear Mechanism of CrN Coating on Aluminum Alloys Deposited by AIP Method

  • Kim, Seock-Sam;Suh, Chang-Min;Murakami, Ri-ichi
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.43-48
    • /
    • 2002
  • Dry sliding wear and friction test of CrN coaling on two types of aluminum alloy substrates,6061 Al and 7075 Al deposited by arc ion plating, was peformed with a ball-on-disk tribometer. The effects of normal Bead and the mechanical properties of substrate on the friction coefficient and wear-resistance of CrN coating were investigated. The worn surfaces were observed by SEM. The results show that surface micro-hardness of CrN- coated 7075 Al is higher than that of CrN-coated 6061 Al. With an increase in normal lead, wear volume increases, while the friction coefficient decreases. The friction coefficient of CrN-coated 6061 Al is higher than that of CrN-coated 7075 Al, while the wear-resistance of CrN-coated 6061 Al is lower than the CrN-coated 7075 Al's, which indicates that the substrate mechanical properties have strong inf1uences on the friction coefficient and wear of CrN coating. The main wear mechanism was fragments of CrN coating, which were caused by apparent plastic deformation of substrate during wear test.

Effect of Cooling Rates in Post-Soldering of Sn-Ag-Cu Lead-free Solder Joints (솔더링 후의 냉각속도가 Sn-Ag-Cu 무연솔더 접합계면 특성에 미치는 영향)

  • 정상원;이혁모
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.110-113
    • /
    • 2003
  • 여러가지 Sn-Ag-Cu 솔더조성과 솔더링 후의 냉각속도에 따라 솔더링 접합부에서의 계면 미세조직의 다양한 변화를 관찰해 보았다. 현재까지 Sn-Ag-Cu 3원계 공정점에 대한 정확한 연구가 미흡하고, 상용으로 제품화되고 있는 Sn-Ag-Cu 합금계는 3원계 공정조성에서 약간 벗어난 조성들을 선택하고 있다고 할 수 있다. 따라서, 본 연구에서 사용한 Sn-Ag-Cu 합금 조성은 Sn-3.5Ag, Sn-3Ag-0.7Cu, Sn-3Ag-1.5Cu, Sn-3.7Ag-0.9Cu, Sn-6Ag-0.5Cu로 선택하였으며, 각 조성에서 Lap Shear Joint를 제조하였다. 사용한 Solder pad는 Cu pad와 Cu pad 위에 Au/Ni를 plating한 것을 이용하였다. 리플로우 솔더링 조건은 $250^{\circ}C$ 이상의 온도에서 60초 실시하였으며, 리플로우 솔더링 후의 냉각속도를 달리하여 냉각시켰다. 솔더링 후의 냉각속도가 느려질수록 계면 금속간화합물(IMC)의 두께가 더욱 증가하며, 조대화되었다. 또한 솔더 조성의 영향에서 Cu와 Ag의 함량이 높을수록 계면 IMC의 두께가 증가되었으며, 이는 솔더내부에 형성된 IMC 입자들이 조대화되어 계면 IMC층에 결합되어 나타났기 때문이다.

  • PDF

Development of Build-up Printed Circuit Board Manufacturing Process Using Rapid Prototyping Technology and Screen Printing Technology

  • Im, Yong-Gwan;Cho, Byung-Hee;Chung, Sung-Il;Jeong, Hae-Do
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.4
    • /
    • pp.51-56
    • /
    • 2003
  • Generally, the build-up printed circuit board manufactured by a sequential process involving etching, plating, drilling, etc, which requires many types of equipments and long lead time. Etching process is suitable for mass production, however, it is not adequate for manufacturing a prototype in the development stage. In this study, we introduce a screen printing technology for prototyping a build-up printed circuit board. As for the material, photo/thermal curable resin and conductive paste are used for the formation of dielectric and conductor. The build-up structure is made by subsequent processes such as formation of a liquid resin thin layer, solidification by a UV/IR light, and via hole filling with a conductive paste. By use of photo curable resin, productivity is greatly enhanced compared with thermal curable resin. Finally, the basic concept and the possibility of build-up printed circuit board prototyping are proposed in comparison with the conventional process.

Development of Build up Multilayer Board Rapid Manufacturing Process Using Screen Printing Technology (스크린인쇄 법을 이용한 Build-up다층인쇄회로기판의 쾌속제조공정 기술개발)

  • 조병희;정해도;정해원
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.4
    • /
    • pp.15-22
    • /
    • 1999
  • Generally, many equipments and a long lead time ale required to manufacture the build-up multilayer board through various processes such as etching, plating, drilling etc. Wet process is suitable for mass production, however it is not adequate for manufacturing prototype in developing stage. In this study, a silk screen printing technology is introduced to make a prototype build-up multilayer board. As for the material photo/thermal curable resin and conductive paste are used for forming dielectric and conductor. And conductive paste fills vias for interconnecting each layer, and also is used for circuit patterning by silk screen technology. Finally, the basic concept and the possibility of build-up multilayer board prototype is proposed and verified as a powerful approach, compared with the conventional processes.

  • PDF

Application of nanocomposite material to avoid injury by physical sports equipment

  • Weifeng Qin;Zhubo Xu
    • Advances in nano research
    • /
    • v.14 no.2
    • /
    • pp.195-200
    • /
    • 2023
  • Safety in sports is important because if an athlete has an accident, he may not be able to lead an everyday life for the rest of his life. The safety of sports facilities is very effective in creating people's sports activities, with the benefits of staying away from physical injury, enjoying sports, and mental peace. Everyone has the right to participate in sports and recreation and to ensure that they want a safe environment. This study prepares a very good Nickel-Cobalt -Silicon carbide (Ni/Co-SiC) nanocomposite with convenient geometry on the leg press machine rod, employing the pulse electrodeposition technique to reduce the rod's wear and increase the durability of sports equipment and control sports damages. The results showed that the Ni/Co-SiC nanocomposite formed at 2 A/dm2 shows extraordinary microhardness. The wear speed for the Ni/Co-SiC nanocomposite created at 4 A/dm2 was 15 mg/min, showing superior wear resistance. Therefore, the Ni/Co-SiC nanocomposite can reduce sports equipment's wear and decrease sports injuries. Ni-Co/SiC nanocomposite layers with various scopes of silicon carbide nanoparticles via electrodeposition in a Ni-Co plating bath, including SiC nanoparticles to be co-deposited. The form and dimensions of Silicon carbide nanoparticles are watched and selected using Scanning Electron Microscopy (SEM).