• Title/Summary/Keyword: Lead contaminated soil

Search Result 130, Processing Time 0.025 seconds

The Extraction Characteristics of Metal-contaminated Soil by Soil Washing (토양세척기법을 이용한 중금속 오염토양 처리에서 중금속 추출특성)

  • Hwang, Seon-Suk;Lee, Noh-Sup;NamKoong, Wan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1072-1080
    • /
    • 2005
  • The extraction characteristics of heavy metals(HM) from a contaminated soil at existing lead smelters were investigated with ethylene diamine tetraacetic acid(EDTA), citrate and HCl as washing solutions. EDTA was more effective for Pb than for other heavy metals. As the mol ratio of EDTA/HM increased, the removal efficiency of heavy metals became higher. When the mol ratio of EDTA/HM approached to 6.5, it removed Pb most effectively. Citrate was effective especially in extracting Zn. The removal efficiency of HCl was comparatively high in almost all heavy metals, and at 0.3N concentration it was the highest. After soil washing process by the use of EDTA, the great part of exchangeable fractions and most of heavy metals of weakly adsorbed like carbonate fraction were extracted. For washing with citrate and HCl, four heavy metals showed the similar exchange of chemical partitioning and the exchangeable fractions of Pb which has weakly adsorbed to soil were more increased than before the process. As removal efficiency of citrate washing process depends upon the distribution of non-detrital fractions, so it can be contended that only the amount of non-detrital fractions could be removed from all the heavy metal content. EDTA and HCl could remove most of non-residual fractions in all heavy metals except Zn. As a result of EDTA washing, toxicity characteristic leaching procedure(TCLP) concentration of the processed soil met the USEPA Pb limit of 5.0 mg/L.

A study on the washing remediation of tailing waste and contaminated surrounding soil of a bandoned metal mines (폐금속광산 광미 및 주변 오염토양 세정에 관한 연구)

  • 이동호;박옥현
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.87-101
    • /
    • 1999
  • This study has been carried out to examine the feasibility of washing technique for reducing the heavy metal contamination level of tailing wastes and agricultural soil surrounding abandoned metal mines. Some organic acids with low molecular weight were used as washing solution. Initial contamination levels of copper and lead for some soil samples were found to exceed the standard levels of countermeasure and concern, and those of cadmium to approach the standard level of countermeasure. Experimental results using sequential extraction method revealed that more than half of copper and lead existing in tailing wastes are adsorbed forms available for plants. There are some proportional relationships between metal concentrations determined by using 0.1N HCI solution and those determined by sequential extractions. Citric acid was turned out to be superior to oxalic acid and acetic acid with low molecular weight in washing above three metals. When citric acid is used for washing heavy metals from soil, it is desirable to operate at pH less than 5.5 for better washing effect. Metal removal effect by citric acid solution has been proved to depend upon solution concentration and the mass ratio of solution to soil. Addition of SDS(Sodium Dodecyl Sulfate) to citric acid improved the washing effect of cadmium among three metal most significantly. while copper removal did not change. Washing technique using citric acid for removal of heavy metals from agricultural soil or tailing wastes is recognized to be an effective remediation method.

  • PDF

Impact of Livestock-production Wastewater on Water Pollution (가축분뇨수의 무단방류가 샛강오염에 미치는 영향)

  • Choe, Hong-Rim;Son, Jae-Ho;Ryu, Sun-Ho
    • Journal of Korean Society of Rural Planning
    • /
    • v.2 no.1
    • /
    • pp.69-78
    • /
    • 1996
  • Environmental impact assessment survey reflecting farmers` opinion on the residence and production space in rural settlement area by ORD showed that more than 86% of respondents thought their reservoirs and waterways (small rivers) were getting seriously contaminated primarily by garbage and livestock manure. A typical rural settlement unit was taken to assess the impact of improper management of livestock manure in the farms on the water quality of small river flowing down along the villages where swine and dairy farms were situated in Daejook 2, 3-ri, Seolseong-myun, Icheon-gun. Nitrogen compounds such as NO$_3$-N, NO$_2$-N, NH$_3$-N, and phosphorus compound H$_x$PO$_4$, DO, BOD$_5$, COD, and microbial density were analyzed to evaluate water quality at five test sites designated along the water stream. Tests showed. for example, BOD$_5$ at site 4 was average 9.2mg/l which was about 3~8 times higher than that of observation site 2 and 3, at which most livestock houses were situated. This is a clear evidence that the nutrients of livestock manure illegally discharged to small river can lead to an eutrophication of the river at downstream. A soil absorption system with aeration could be one of alternatives to treat the contaminated wastewater by livestock manure. The place at downstream, inbetween observation site 1 and 2, could be the best construction site for the treatment facility from the standpoint of the overall treatment efficiency, An enclosed composting system can also be regarded as a good alternative for treatment of the sludge which is the by-product of the soil absorption system operation.

  • PDF

Effect of Leaf mold on Cd Uptake in paddy Soil by Rice Plant (답토양(沓土壤)에서 부엽토(腐葉土)가 수도(水稻)의 Cd흡수(吸收)에 미치는 영향(影響))

  • Kim, Seong-Jo;Baek, Seung-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.1
    • /
    • pp.99-104
    • /
    • 1985
  • To evaluate the effect of organic matter on phytotoxicity and uptake of Cd by rice plant, paddy rice was cultivated by pot test under the flooded condition by treating a sing concentration of 25ppm Cd and different amounts of leaf mold. The phytotoxicity of rice plant by Cd and the content of Cd in the vegetative rice plant reduced by increasing the content of organic matter. The content of Cd in the vegetative parts of rice plant decreased in the order of sheath, stem, leaf blade, and brown rice. The content of Cd in brown rice was 0.59 ppm below 1 ppm, a criterion level of contaminated rice, when paddy rice was cultivated under the condition flooded condition through the whole period of cultivation. And that of Cd in brown rice could be controlled until 0.14ppm such as the similar level producing at non-contaminated paddy soil when applied 200g of lead mold/8kg of dried soil and 25ppm of Cd to the flooded paddy soil.

  • PDF

Effects of Pb and CO2 on the Growth of Pinus densiflora Seedlings (소나무(Pinus densiflora) 묘목의 생장에 미치는 납과 CO2의 영향)

  • Kim, Sung-Hyun;Hong, Sun-Hwa;Kang, Ho-Jeong;Ryu, Hee-Wook;Lee, Sang-Don;Cho, Kyung-Suk;Lee, In-Sook
    • Journal of Ecology and Environment
    • /
    • v.29 no.6
    • /
    • pp.559-563
    • /
    • 2006
  • This work was investigated the effects of the elevated $CO_2$ and Pb contamination on the growth of Pinus densiflora. Two-years pine trees were planted in Pb-contaminated soils (500 mg/kg-soil) and uncontaminated soils, and cultivated for 3 months in the growth chamber where $CO_2$ concentration was controlled at 380 or 760 ppmv. The growth of P. densiflora were comparatively analyzed in 4 kinds of soil samples (CA : $CO_2$ 380 ppmv + Pb 0 mg/kg, CB : $CO_2$ 380 ppmv + Pb 500 mg/kg, EA : $CO_2$ 760 PPmv + Pb 0 mg/kg, EB : $CO_2$ 760 ppmv + Pb 500 mg/kg). It was measured the growth changes of the p. densiflora caused by $CO_2$ concentration and Pb contamination. The growth of P. densiflora was remarkably inhibited in the Pb-contaminated soil, although the biomass and the root elongations were not significantly affected by the elevated $CO_2$. These results suggested that the growth of p. densiflora was sensitively influenced by Pb contamination rather than $CO_2$ concentration. Compared to the initial soil, total Pb concentration in the soil samples was decreased at 760 ppmv $CO_2$ as well as at 380 ppmv $CO_2$ after 3 months. The accumulation of Pb in the roots at 760 ppmv $CO_2$ was two-fold of that at 380 ppmv $CO_2$, indicating that Pb bioavailability in the root of p. densiflora might be affected by the elevated $CO_2$.

Effect of Heavy Metal Contents in Upland Soil on the Uptake by Green onion and Lettuce and their growth (토양중(土壤中) 중금속함량(重金屬含量)이 파, 상치의 중금속흡수(重金屬吸收) 및 생육(生育)에 미치는 영향(影響))

  • Kim, Bok-Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.3
    • /
    • pp.253-262
    • /
    • 1995
  • The heavy metal contents of soils which had been contaminated with mine residues and green onion and lettuce which were grown on these soils were analyzed. The results obtained are summarized as follows: 1. Heavy metal contents in the soil where green onion and lettuce died back or were poor in growth were unusually high. 2. Heavy metal contents in the plants grown in the soil of high level of metals were also high, in the order of root > leaf > stem. In case of Mn, however, the content was the highest in the leaf. 3. Contents of Cd, Cu, Zn and Ni in soil were positively correlated with those in plant. In case of Pb, there was no consistent relationship between the contents in soil and plant. 4. Even in the soils where plant growth appeared to be normal the heavy metal contents both in soil and in plant were higher than the national average.

  • PDF

Study on Geochemical Behavior of Heavy Metals by Indigenous Bacteria in Contaminated Soil and Sediment (국내 일부 오염 토양 및 퇴적물 내 토착 미생물에 의한 중금속의 지구화학적 거동 연구)

  • Song, Dae-Sung;Lee, Jong-Un;Ko, Il-Won;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.575-585
    • /
    • 2007
  • Microbial control of the geochemical behavior of heavy metals (Cd, Cu, Pb, and Zn) and As in contaminated subsurface soil and sediment was investigated through activation of indigenous bacteria with lactate under anaerobic condition for 25 days. The results indicated that dissolved Cd, Pb and Zn were microbially removed from solutions, which was likely due to the formation of metal sulfides after reduction of sulfate by indigenous sulfate-reducing bacteria. Soils from the Dukeum mine containing a large amount of sulfate resulted in complete removal of dissolved As after 25 days by microbial activities, while there were gradual increases in dissolved As concentration in soils from the Hwabuk mine and sediments from the Dongducheon industrial area which showed low $SO_4{^2-}$ concentrations. Addition of appropriate carbon sources and sulfate to contaminated geological media may lead to activation of indigenous bacteria and thus in situ stabilization of the heavy metals; however, potential of As release into solution after the amendment should be preferentially investigated.

Investigation for TCE Migration and Mass Discharge Changes by Water Table Rising in Porous Media (투수성 매질 내에서의 지하수위 상승에 따른 TCE 거동특성 및 오염물 이동량 변화 연구)

  • Lee, Dong Geun;Moon, Hee Sun;Lee, Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.2
    • /
    • pp.27-35
    • /
    • 2013
  • In this study, three dimensional and two dimensional laboratory experiments were conducted to investigate the effect of water table rising on DNAPL migration, contaminants mass discharge ($M_d$), and residual NAPL distribution. The accumulation of TCE in unsaturated zone was observed in both two and three dimensional experiments. This implies DNAPL sources could exist in unsaturated zone at contaminated sites. It has been investigated that the TCE concentration is proportional to the areal ratio of residual TCE. This means the residual TCE obviously could affect the TCE concentration in aquifer system. The results of the two-dimensional experiment indicated that the contaminant sources in unsaturated zone could lead the $M_d$ increasing with water table rising and the source zone heterogeneity could also highly affect the $M_d$.

Effects of Pb, Cu, and Cr on Anaerobic Biodegradation of Diesel Compounds by Indigenous Bacteria (혐기성 토착미생물의 디젤 생분해에 대한 Pb, Cu, Cr의 영향)

  • Yoo, Chae-won;Lim, Hyeong-Seok;Park, Jae-woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.15-21
    • /
    • 2015
  • Anaerobic biodegradation of diesel with coexisting heavy metals (Pb) was monitored in batch mode. Two different groups of the indigenous bacteria from a site contaminated with diesel and lead were used in this research: the first group was composed of a single species and the second group was composed of several species. The effect of heavy metals on the microbial population was monitored and confirmed the biodegradation mechanism in each combined contaminant. Growth of the microorganisms in 21 days was observed Diesel > Diesel + Pb > Diesel + Cu > Diesel + Pb + Cu > Diesel + Cr > Diesel + Pb + Cr. Indigenous microorganisms showed the adaptation in the Pb contaminate. Interactive toxic effect using AMES test observed larger synergistic effect than antagonistic in Diesel + Cr and Diesel + Pb + Cr. Therefore, the main effects of diesel biodegradation in the present of heavy metals are likely to exist other factors as well as toxic of heavy metals. This is a necessary part of the future studies.

A New Circulation Method for Electrokinetic Remediation of Soil Contaminated with Lead (새로운 순환방식을 적용한 동전기 정화기술에 의한 오염토양내의 납제거)

  • 이현호;백기태;양지원
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.1
    • /
    • pp.9-16
    • /
    • 2003
  • A new method has been proposed and developed that solves the problem of decreasing electroosmotic flow rate by excess $H^{+}$ and precipitation of heavy metal by $OH^{-}$. An electrolytic solution was circulated between the anode and cathode compartments that enabled the pH at the anode and cathode to be controlled. The change of the soil pH by circulation systems affects the operation time, by lowering the rate of increase of the electric potential gradient, and the removal efficiency of heavy metals, by affecting the soil pH. Since there was no effluent from the cathode compartment in circulation system, there was no need to treat the wastewater after the experiment, which resulted in the reduction of influent electrolyte volume.