• Title/Summary/Keyword: Lead Length

Search Result 500, Processing Time 0.03 seconds

Effects of Changes in Fishing Effort on Yield of Kuwait's Commercial Fish Stocks

  • LEE J. U.
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.6
    • /
    • pp.475-483
    • /
    • 1990
  • An assessment of Kuwait's commercial fish stocks: hamoor (Epinephelus tauvina), zobaidy (Pampus argenteus), nakroor (Pomadasys argenteus) and sheiry (Lethrinus nebulosus), was conducted using length-frequency data, mean growth and mortality estimates obtained during 1981$\~$1988. The length-cohort analysis indicated that increases in fishing effort would not lead to long-term gains in yield of the stocks at the current estimate of natural mortality rate (M). At high M which was assumed arbitrarily, some benefit in yield could be obtained, especially for hamoor and sheiry. At low M, the yield of all stocks decreased with increased fishing effort. Increases in fishing effort resulted in significant dec-line in spawning stock size for all the stocks. Yield-per-recruit analysis indicated that, un-der low M assumption, a higher yield can be obtained for zobaidy and nakroor by reducing fishing effort. At moderate M, decreases in fishing effort brought gains in yield per recruit of the stocks, but it was not substantial compared with the present level of M. At high M, most of the stocks reached the maximum yield-per-recruit. Overall, increased fishing effort either will not be associated with large long-term gains in yield or, in some stocks, might cause a decline from the present level.

  • PDF

The Decision of the Optimal Shape of Inductive Loop for Real-Time Traffic Signal Control (실시간 교통신호제어를 위한 루프 검지기의 최적형태결정에 관한 연구)

  • 오영태;이철기
    • Journal of Korean Society of Transportation
    • /
    • v.13 no.3
    • /
    • pp.67-86
    • /
    • 1995
  • It requires the detector system which can collect highly reliable traffic data in order to perform the real-time traffic signal control. This study is to decide the optimal shape of inductive loop for the real-time traffic signal control .This loop is located at the stopline in the signalized intersection for DS(Degree of Saturation) control. In order to find out the optimal shape of loop, 6types of experiments were performed . The results of the basic experiments of loops are as follows ; -the optimal number of turns for loop is 3 turns. -the impedance values of the loop detectors are similar to that of NEMA standards -the 1.8${\times}$4.5M loop is excellent for sensitivity in actual detection range of car length comparing to other shape of inductive loops. At the experimental of establishments of the optimal loop shape, it found that 1.8 4.5M loop has the highest values of $\DeltaL$ comparing to other types of loops, It means that the range of Lead-in cable length of this loop. And this loop is highly reliable in occpupancy time. Conclusivley, the 1.8${\times}$4.5M inductive loop is the optimal solution as a stop line loop detector for real -time traffic signal control.

  • PDF

Evaluation on the Effect of Ultrasonic Testing due to Internal Medium of Pipe in Nuclear Power Plant (원자력발전소 배관 내부 매질이 초음파검사에 미치는 영향 평가)

  • Yoon, Byung Sik;Kim, Yong Sik;Yang, Seung Han
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.9 no.1
    • /
    • pp.25-30
    • /
    • 2013
  • The periodic inspection of piping and pressure vessels welds in nuclear power plant has to provide reliable result related to weld flaws, such as location, maximum amplitude response, ultrasonic length, height and finally the nature or flaw pattern. The founded flaw in ultrasonic inspection is accepted or rejected based on these data. Specially, the amplitude of flaw response is used as basic parameter for flaw sizing and it may cause some deviation in length sizing result. Currently the ultrasonic inspections in nuclear power plant components are performed by specific inspection procedure which describing inspection technique include inspection system, calibration methodology and flaw characterizing. To perform ultrasonic inspection during in-service inspection, reference gain should be established before starting ultrasonic inspection by the requirement of ASME code. This reference gain used as basic criteria to evaluate flaw sizing. Sometimes, a little difference in establishing reference gain between calibration and field condition can lead to deviation in flaw sizing. Due to this difference, the inspection result may cause flaw sizing error. Therefore, the objective of this study is to compare and evaluate the ultrasonic amplitude difference between air filled and water filled pipe in nuclear power plant. Additionally, the accuracy of flaw sizing is estimated by comparing both conditions.

A tension stiffening model for analysis of RC flexural members under service load

  • Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.29-51
    • /
    • 2016
  • Tension-stiffening is the contribution of concrete between the cracks to carry tensile stresses after cracking in Reinforced Concrete (RC) members. In this paper, a tension-stiffening model has been proposed for computationally efficient nonlinear analysis of RC flexural members subjected to service load. The proposed model has been embedded in a typical cracked span length beam element. The element is visualized to consist of at the most five zones (cracked or uncracked). Closed form expressions for flexibility and stiffness coefficients and end displacements have been obtained for the cracked span length beam element. Further, for use in everyday design, a hybrid analytical-numerical procedure has been developed for nonlinear analysis of RC flexural members using the proposed tension-stiffening model. The procedure yields deflections as well as redistributed bending moments. The proposed model (and developed procedure) has been validated by the comparison with experimental results reported elsewhere and also by comparison with the Finite Element Method (FEM) results. The procedure would lead to drastic reduction in computational time in case of large RC structures.

Heat and Flow Analysis in the HVAC Impeller for Mid-Size Car (중형차 HVAC 임펠러 내의 열유동 해석)

  • Lee, Dong-Ryul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1503-1510
    • /
    • 2012
  • In this research, various cases of centrifugal impeller for HVAC system have been numerically analyzed by changing center angle of blades and length of outlet. Commercial CFD code, FLUENT has been used to calculate velocity, pressure, turbulence intensity, and temperature that can lead numerous results. Regardless of warming up, when the heater power level was increased, the temperature inside surrounding impeller also increased due to flowing outer air, but the temperature decreased because of flowing inner air. Consequently, the variation of central angle of blades and length of outlet led difference of velocity and flow rate which can reduce $CO_2$ in gas emission.

A Competition-based Algorithm for Routing Discovery and Repair in Large-scale VANET

  • Wu, Cheng;Wang, Lujie;Wang, Yiming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5729-5744
    • /
    • 2017
  • Vehicular Ad Hoc Networks (VANET) in the large-scale road section usually have typical characteristics of large number of vehicles and unevenly distribution over geographic spaces. These two inherent characteristics lead to the unsatisfactory performance of VANETs. This poor performance is mainly due to fragile communication link and low dissemination efficiency. We propose a novel routing mechanism to address the issue in the paper, which includes a competition-based routing discovery with priority metrics and a local routing repair strategy. In the routing discovery stage, the algorithm uses adaptive scheme to select a stable route by the priorities of routing metrics, which are the length of each hop, as well as the residual lifetime of each link. Comparisons of different ratios over link length and link stability further show outstanding improvements. In the routing repair process, upstream and downstream nodes also compete for the right to establish repair process and to remain as a member of the active route after repair. Our simulation results confirm the improved performance of the proposed algorithm.

TMD parameters optimization in different-length suspension bridges using OTLBO algorithm under near and far-field ground motions

  • Alizadeh, Hamed;Lavasani, H.H.
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.625-635
    • /
    • 2020
  • Suspension bridges have the extended in plan configuration which makes them prone to dynamic events like earthquake. The longer span lead to more flexibility and slender of them. So, control systems seem to be essential in order to protect them against ground motion excitation. Tuned mass damper or in brief TMD is a passive control system that its efficiency is practically proven. Moreover, its parameters i.e. mass ratio, tuning frequency and damping ratio can be optimized in a manner providing the best performance. Meta-heuristic optimization algorithm is a powerful tool to gain this aim. In this study, TMD parameters are optimized in different-length suspension bridges in three distinct cases including 3, 4 and 5 TMDs by observer-teacher-learner based algorithm under a complete set of ground motions formed from both near-field and far-field instances. The Vincent Thomas, Tacoma Narrows and Golden Gate suspension bridges are selected for case studies as short, mean and long span ones, respectively. The results indicate that All cases of used TMDs result in response reduction and case 4TMD can be more suitable for bridges in near and far-field conditions.

A Numerical Analysis of Transonic Flows in an Axisymmetric Main Nozzle of Air-Jet Loom (에어제트직기 주 노즐내 천음속 유동의 수치 해석적 연구)

  • Oh T. H.;Kim S. D.;Song D. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.168-173
    • /
    • 1998
  • A numerical analysis of axisymetric backward facing step main nozzle flow in air jet loom has been accomplished. To obtain basic design data for an optimum main nozzle for an air-jet loom and to predict the transonic/supersonic flow, a characteristic based upwind flux difference splitting compressible Navier-Stokes method has been used. The wall static pressure of the main nozzle and the flow velocity changes in the nozzle tube were analyzed by changing air tank pressures and acceleration tube lengths. The flow inside the nozzle experiences double choking one at the needle tip and the other at the acceleration tube exit at tank pressures over $4kg_f/cm^2$. The tank pressure $P_t$ leading to the critical condition depends on the acceleration tube length; i.e, $P_t$ is higher for longer acceleration tubes. The $P_t$ value required to bring the acceleration tube exit to the critical condition is nearly constant regardless of acceleration tube length. The round needle tip shape might lead to less total pressure loss when compared with step shape.

  • PDF

An Approach to the Design Parameter of Air-Cored Superconducting Synchronous Generator (공심형 초전도 동기발전기의 설계변수에 대한 연구)

  • Jo, Young-Sik;Hong, Jung-Pyo;Lee, Ju;Sohn, Myung-Hwan;Kwon, Young-Kil;Ryu, Kang-Sik
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.3
    • /
    • pp.101-106
    • /
    • 2001
  • Air-cored superconducting synchronous generator(ASSG) is characterized by an air-cored machine with its rotor iron and stator iron teeth removed. For this reason, in the case of the shape optimum design of ASSG, other design variables different from an iron-cored machine should be considered, which will lead to substantial improvement on the performance. The major design variables that are considered by using Three-dimensional Finite element Method(3D FEM) in this paper are : 1) field coil width, 2) axial length of magnetic shield, and 3) armature winding method. End-ring of armature winding is considered in the calculation of EMF. When it comes to field coil width, as field coil width enlarges, its effective field increases but the maximum field on the superconductor decreases. this determines the critical current density. this study presents an effective field coil width, axial length of magnetic shield, and armature winding method, and also the analysis is verified by the experimental results.

  • PDF

A Study on the Breakdown Mechanism of Rotating Machine Insulation

  • Kim, Hee-Gon;Kim, Hee-Soo;Park, Yong-Kwan
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.3
    • /
    • pp.71-76
    • /
    • 1997
  • A lot of experiments and analyses have been done to determine the aging mechanism of mica-epoxy composite material used for large generator stator windings in order to estimate remaining life of the generator for last decades. After degrading artificially the mica-epoxy composite material, the surface analysis is performed to analyze breakdown mechanism of insulation in air and hydrogen atmosphere; i) In the case of air atmosphere, it is observed that an aging propagation from conductor to core by partial discharge effect and the formation of cracks between layers is widely carbonized surface. ii) In case of hydrogen atmosphere, the partial discharge effect is reduced by the hydrogen pressure (4kg/$\textrm{cm}^2$). Potassium ions forming a sheet of mica is replaced by hydrogen ions, which can lead to microcracks. It is confirmed that the sizes of crack by SEM analysis are 10∼20[$\mu\textrm{m}$] in length under air, and 1∼5[$\mu\textrm{m}$] in diameter, 10∼50[$\mu\textrm{m}$] in length under hydrogen atmosphere respectively. The breakdown mechanism of sttor winding insulation materials which are composed of mica-epoxy is analyzed by the component of materials with EDS, SEM techniques. We concluded that the postassium ions of mica components are replaced by H\ulcorner, H$_3$O\ulcorner at boundary area of mica-epoxy and/or mica-mica. It is proposed that through these phenomena, the conductive layers of potassium enable creation of voids and cracks due to thermal, mechanical, electrical and environmental stresses.

  • PDF