• Title/Summary/Keyword: Lead Dioxide

Search Result 101, Processing Time 0.028 seconds

Characteristics of White Pigments Used in Jiho Oh and Bonung Gu's Paintings Produced in Modern and Contemporary Period (근·현대 시대 오지호와 구본웅 유화작품에 사용된 백색계 안료의 특성 연구)

  • Kim, Jung Heum;Kim, Hwan Ju;Park, Hye Sun;Lim, Sung Jin
    • Journal of Conservation Science
    • /
    • v.33 no.5
    • /
    • pp.371-380
    • /
    • 2017
  • To investigate the pigments used in modern and contemporary oil paintings, thirty-two paintings by Jiho Oh and Bonung Gu were selected. The white pigment found in the ground and painting layers was identified as lead white (hydrocerussite), zinc white (zinc oxide), titanium white (titanium dioxide in anatase or rutile forms), calcite (calcium carbonate), and barite (barium sulfate). Further, this indicated that pigments differ according to the artist and date of the painting's creation. However, both Oh and Gu used zinc white during the modern and contemporary period, while lead white was replaced by titanium white, barite and calcite. Compared with the overseas studies on pigments and oil paints, the change patterns of pigments were the same with them but the periods of the use were partially different. It seems to be due to the fact that South Korea is linked to the historical background of the art material which was imported from Japan instead of Western countries. Therefore, it is inevitable that any change in the white pigments used for domestic oil paintings occurred at a different time from global transitions. If the results of this study are used in the analysis of art works it is suggested that a database recording such aspects as material properties of oil paints, artistic techniques, and chronology would become important for future conservation science and the study of art history.

Environmental Policy Comparison under Various Potential Forms of Health Response Function (건강반응함수를 고려한 환경정책의 비교)

  • Hlasny, Vladimir
    • Environmental and Resource Economics Review
    • /
    • v.19 no.4
    • /
    • pp.915-961
    • /
    • 2010
  • This study is concerned with health damages from $SO_2$ under different assumptions on the relationship between air concentrations and their marginal health impacts. $SO_2$ concentration profiles resulting under emission caps, and a system of tradable emission allowances are compared. Using slopes and curvatures of the health response function consistent with evidence in medical literature, emission caps are shown to lead to lower aggregate damages under all considered parameters, an advantage of $26~452 million. The benefit of emission caps over tradable allowances increases with the curvature of the response function, but falls with its slope. The advantage of emission caps in terms of environmental damages is never overturned completely for the considered functional forms. The marginal damage function would have to be steeper than what the current medical evidence suggests for price instruments to outperform emission caps in terms of aggregate damages. With other welfare consequences included-emission abatement costs, consumer and producer surpluses, and government revenue-emission caps always lead to a $3.7~4.1 billion greater measure of social welfare.

  • PDF

Evaluation of Fungicidal, Anti-sapstain and Termiticidal Efficacy of Dan-Chung Treated Blocks (단청처리재의 방부.방미.방의(흰개미)효력 평가)

  • 이명재;이동흡;손동원
    • Journal of Korea Foresty Energy
    • /
    • v.22 no.2
    • /
    • pp.36-43
    • /
    • 2003
  • This study was carried out to evaluate the fungicidal, anti-sapstain and termiticidal efficacy of commercial Dan-Chung which are currently being used for painting to decorate and to provide durability with structures of temples. Two binders (Polysol and Gelatine), and eleven pigments (Iron Oxide Red, Lead Red, Toluidine Red, Chrome Yellow, Titanium Dioxide, Ultramarine Blue, Chrome Oxide Green, Permanent Black, Cyanine Green and Ho-bun(Chalk)) were applied for the evaluation. The fungicidal and anti-sapstain activity of each pigment were depended on the types of binders. When the Polysol was used as a binder, the fungicidal efficacy of Toluidine Red treated specimen was close to the standard value (above 80) with grater than 70 against to two wood decay fungi (T. palustris and T. versicolor). The anti-sapstain efficacy of Lead Red treated specimens was excellent against to three sapstain fungi (P. funiculosum, T. viride and R. nigricans), and that of Ultramarine Blue treated specimens was also excellent to T. viride. The other pigments had little efficacy to these micro-organisms. Although there were some different trends of the effectiveness depending on the types of binders, the anti-termite effectiveness of Chrome Oxide Green and Chrome Yellow was outstanding to termite tests.

  • PDF

Improving the brittle behavior of high-strength shielding concrete blended with lead oxide, bismuth oxide, and tungsten oxide nanoparticles against gamma ray

  • Mohamed Amin;Ahmad A. Hakamy;Abdullah M. Zeyad;Bassam A. Tayeh;Ibrahim Saad Agwa
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.29-53
    • /
    • 2023
  • High-strength shielding concrete against gamma radiation is a priority for many medical and industrial facilities. This paper aimed to investigate the gamma-ray shielding properties of high-strength hematite concrete mixed with silica fume (SF) with nanoparticles of lead dioxide (PbO2), tungsten oxide (WO3), and bismuth oxide (Bi2O3). The effect of mixing steel fibres with the aforementioned binders was also investigated. The reference mixture was prepared for high-strength concrete (HSCC) containing 100% hematite coarse and fine aggregate. Thirteen mixtures containing 5% SF and nanoparticles of PbO2, WO3, and Bi2O3 (2%, 5%, and 7% of the cement mass, respectively) were prepared. Steel fibres were added at a volume ratio of 0.28% of the volume of concrete with 5% of nanoparticles. The slump test was conducted to workability of fresh concrete Unit weight water permeability, compressive strength, splitting tensile strength, flexural strength, and modulus of elasticity tests were conducted to assess concrete's engineering properties at 28 days. Gamma-ray radiation of 137Cs emits photons with an energy of 662 keV, and that of 60Co emits two photons with energies of 1173 and 1332 keV were applied on concrete specimens to assess radiation shielding properties. Nanoparticles partially replacing cement reduced slump in workability of fresh concrete. The compressive strength of mixtures, including nanoparticles was shown to be greater, achieving 94.5 MPa for the mixture consisting of 7.5 PbO2. In contrast, the mixture (5PbO2-F) containing steel fibres achieved the highest values for splitting tensile, flexural strength, and modulus of elasticity (11.71, 15.97, and 42,840 MPa, respectively). High-strength shielded concrete (7.5PbO2) showed the best radiation protection. It also showed the minimum concrete thickness required to prevent the transmission of radiation.

Study on the Cargonation Properties of Fly Ash Concrete using a Vacuum Instrument

  • Jung, Sang-Hwa;Yoo, Sung-Won;Chae, Seong-Tae
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.186-192
    • /
    • 2007
  • Carbonation is one of the most important factors causing the corrosion of reinforcement concrete. Nevertheless, experimental studies on the concrete carbonation have not been carried out sufficiently because of the slow process of carbonation process. Therefore, this study adopts an experimental system exploiting a vacuum instrument that has been recently developed to accelerate carbonation instead of existing experimental system to conduct rapid carbonation tests on Portland cement and fly-ash cement concretes. Test results revealed that, compared to water-cement ratio of 40%, the carbonation depth increases from 103% to 138% for an increase of water-cement ratio from 45% to 60%. These results are larger than the carbonation depths obtained by mathematical model, and such difference is increasing with larger water-cement ratios. The results also indicated that larger fly-ash contents lead to sharp increase of the carbonation depth, which is in agreement with previous experimental researches. The adoption of the new accelerated carbonation test system enabled to shorten effectively the time required to produce experimental data compared to the existing carbonation test method. The experimental data obtained in this study together with ongoing acquisition of data using the new carbonation test method are expected to contribute in the understanding of the carbonation process of concrete structures in Korea.

The composition analysis of Danchung pigments at Geunjeongjeon Hall in Gyeongbokgung Palace (경복궁 근정전 단청안료의 성분분석)

  • Cho, Nam-Chul;Moon, Whan-Suk;Hong, Jong-Ouk;Hwang, Jin-Ju
    • 보존과학연구
    • /
    • s.22
    • /
    • pp.93-114
    • /
    • 2001
  • The composition analysis of Danchung pigments at Geunjeongjeon Hall in Gyeongbokgung Palace were carried out by FXRF and MXRD. The analytical result of the inside pigments at Geunjeongjeon showed that these painted in use the mineral pigments. Gold pigment was pure gold(Au).The main composition identified in green pigments were chalcanthite($CuSO_4$.$5H_2O$) and celadonite($K(Mg, Fe, Al)_2$.$(Si, Al)_4O_10(OH)_2$ ). Red pigments werecinnnabar(HgS).The analytical result of the outside pigments at Geunjeongjeon revealed that these applied to the artificial synthetic pigment. Yellow pigment was chromeyellow($PbCrO_4$). The main composition identified in red pigments were red lead($Pb_3O_4$)and hematite($Fe_2O_3$). Green pigments were emeral green($C_2H_3A_s3Cu_2O_8$) and chromegreen($Cr_2O_3$). Blue pigment was lazurite($Na_6Ca2Al_6Si_6O_24(SO_4)_2$), titanium dioxide($TiO_2$) of white pigment.

  • PDF

Environmental analysis of present and future fuels in 2D simple model marine gas tubines

  • El Gohary, M. Morsy
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.559-568
    • /
    • 2013
  • Increased worldwide concerns about fossil fuel costs and effects on the environment lead many governments and scientific societies to consider the hydrogen as the fuel of the future. Many researches have been made to assess the suitability of using the hydrogen gas as fuel for internal combustion engines and gas turbines; this suitability was assessed from several viewpoints including the combustion characteristics, the fuel production and storage and also the thermodynamic cycle changes with the application of hydrogen instead of ordinary fossil fuels. This paper introduces the basic environmental differences happening when changing the fuel of a marine gas turbine from marine diesel fuel to gaseous hydrogen for the same power output. Environmentally, the hydrogen is the best when the $CO_2$ emissions are considered, zero carbon dioxide emissions can be theoretically attained. But when the $NO_x$ emissions are considered, the hydrogen is not the best based on the unit heat input. The hydrogen produces 270% more $NO_x$ than the diesel case without any control measures. This is primarily due to the increased air flow rate bringing more nitrogen into the combustion chamber and the increased combustion temperature (10% more than the diesel case). Efficient and of course expensive $NO_x$ control measures are a must to control these emissions levels.

Fabrication of $PbTiO_3$ Thin Film by Chemical Vapor Deposition Technique (화학증착법에 의한 $PbTiO_3$ 박막의 재료)

  • 윤순길;김호기
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.6
    • /
    • pp.33-36
    • /
    • 1986
  • The $PbTiO_3$is well known materials having remarkable ferroelectric piezoelectric and pyro-electric properties. Thin films of the lead titanite has been successfully fabricated by Chemical Vapor Deposition on the borosilicate glass and titanium substrate. The $PbTiO_3$ thin film deposited on the borosilicate glass using the $PbCl_2$, $TiCl_4$ dry oxygen and wet oxygen at different temperatures (50$0^{\circ}C$-$700^{\circ}C$) grows along the (001) preferred orientation. On the other hand the $PbTiO_3$ thin film deposited on the titanium substrate using the PbO grows along the (101) preferred orientation. Growth orientation of deposited $PbTiO_3$ depends on the reaction species irrespective of substrate materials. Maximum dielectic constant and loss tangent of the $PbTiO_3$ thin film deposited on the titanium substrate are about 90 and 0.02 respectively, . Deposition rates of $PbTiO_3$ deposited on the borosilicate glass and titanium substrate are 10-15 ${\mu}{\textrm}{m}$/hr. Titanium dioxide interlayer formed be-tween $PbTiO_3$ film and titanium substrate material, It improved the adhesion of the film.

  • PDF

Effect of Carbon Dioxide-reduced Cement on Properties of Lightweight-foamed Concrete (이산화탄소 저감형 시멘트 함량에 따른 경량기포 콘크리트의 물성평가)

  • Im, Donghyeok;Lee, Won-Ki
    • Journal of Environmental Science International
    • /
    • v.29 no.6
    • /
    • pp.605-612
    • /
    • 2020
  • To improve the initial strength and stability of lightweight-foamed concrete, which shows suitable sound absorption and insulation characteristics, the effect of CO2-reduced cement on the properties of the concrete was investigated. Various mixing ratios were applied by substituting a certain amount of slag and Calcium Sulfo Aluminate (CSA) in CO2-reduced Ordinary Portland Cement (OPC) and the physical properties of the samples were examined using the Korean Standard. The kiln temperatures of the CSA were 100-200℃ ; these values are lower than those of OPC and can lead to energy saving. In addition, the low limestone content reduces greenhouse gas emissions by 20 %. Adding a small amount of CSA in OPC content activates Ca-Al-H2-based hydrates, and the initial compressive strength of the concrete is improved. As the CSA content increased, the thermal conductivity of the concrete decreased by up to 8% compared to plain concrete, thus indicating an improvement in its insulation. Therefore, the settlement stability was improved as the addition of CSA shortened the setting time.

ASSESSMENT OF GAS COOLED FAST REACTOR WITH INDIRECT SUPERCRITICAL $CO_2$ CYCLE

  • Hejzlar, P.;Dostal, V.;Driscoll, M.J.;Dumaz, P.;Poullennec, G.;Alpy, N.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.109-118
    • /
    • 2006
  • Various indirect power cycle options for a helium cooled gas cooled fast reactor (GFR) with particular focus on a supercritical $CO_2(SCO_2)$ indirect cycle are investigated as an alternative to a helium cooled direct cycle GFR. The balance of plant (BOP) options include helium-nitrogen Brayton cycle, supercritical water Rankine cycle, and $SCO_2$ recompression Brayton power cycle in three versions: (1) basic design with turbine inlet temperature of $550^{\circ}C$, (2) advanced design with turbine inlet temperature of $650^{\circ}C$ and (3) advanced design with the same turbine inlet temperature and reduced compressor inlet temperature. The indirect $SCO_2$ recompression cycle is found attractive since in addition to easier BOP maintenance it allows significant reduction of core outlet temperature, making design of the primary system easier while achieving very attractive efficiencies comparable to or slightly lower than, the efficiency of the reference GFR direct cycle design. In addition, the indirect cycle arrangement allows significant reduction of the GFR &proximate-containment& and the BOP for the $SCO_2$ cycle is very compact. Both these factors will lead to reduced capital cost.