• 제목/요약/키워드: Leaching potential

검색결과 157건 처리시간 0.019초

Effects of Temperature and Pressure on Quartz Dissolution

  • Choi, Jung-Hae;Chae, Byung-Gon;Kim, Hye-Jin
    • 지질공학
    • /
    • 제25권1호
    • /
    • pp.1-8
    • /
    • 2015
  • Deep geological disposal is the preferred storage method for high-level radioactive waste, because it ensures stable long-term storage with minimal potential for human disruption. Because of the risk of groundwater contamination, a buffer of steel and bentonite layers has been proposed to prevent the leaching of radionuclides into groundwater. Quartz is one of the most common minerals in earth's crust. To understand how deformation and dissolution phenomena affect waste disposal, here we study quartz samples at pressure, temperature, and pH conditions typical of deep geological disposal sites. We perform a dissolution experiment for single quartz crystals under different pressure and temperature conditions. Solution samples are collected and the dissolution rate is calculated by analyzing Si concentrations in a solution excited by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). After completing the dissolution experiment, deformation of the quartz sample surfaces is investigated with a confocal laser scanning microscope (CLSM). An empirical formula is introduced that describes the relationship between dissolution rate, pressure, and temperature. These results suggest that bentonite layers in engineering barrier systems may be vulnerable to thermal deformation, even when exposed to higher temperatures on relatively short timescales.

Soil stabilization by ground bottom ash and red mud

  • Kim, Youngsang;Dang, My Quoc;Do, Tan Manh;Lee, Joon Kyu
    • Geomechanics and Engineering
    • /
    • 제16권1호
    • /
    • pp.105-112
    • /
    • 2018
  • This paper presents results of a compressive investigation conducted on weathered soil stabilized with ground bottom ash (GBA) and red mud (RM). The effects of water/binder ratio, RM/GBA ratio, chemical activator (NaOH and $Na_2SiO_3$) and curing time on unconfined compressive strength of stabilized soils were examined. The results show that the water/binder ratio of 1.2 is optimum ratio at which the stabilized soils have the maximum compressive strength. For 28 days of curing, the compressive strength of soils stabilized with alkali-activated GBA and RM varies between 1.5 MPa and 4.1 MPa. The addition of GBA, RM and chemical activators enhanced strength development and the rate of strength improvement was more significant at the later age than at the early age. The potential environmental impacts of stabilized soils were also assessed. The chemical property changes of leachate from stabilized soils were analyzed in terms of pH and concentrations of hazardous elements. The observation revealed that the soil mixture with ground bottom ash and red mud proved environmentally safe.

폴리락틱산, 폴리카프로락톤, 폴리에틸렌 옥사이드 삼성분계 블렌드의 형태학적 변화와 이들이 의료용 스캐폴더의 기계적 특성에 미치는 영향 (Morphology Evolution of Poly(L-lactic acid) (PLLA), Poly(ε-caprolactone) (PCL) and Polyethylene Oxide (PEO) Ternary Blend and Their Effects on Mechanical Properties for Bio Scaffold Applications)

  • Ezzati, Peyman;Ghasemi, Ismaeil;Karrabi, Mohammad;Azizi, Hamed;Fortelny, Ivan
    • 폴리머
    • /
    • 제38권4호
    • /
    • pp.449-456
    • /
    • 2014
  • Ternary blends of poly(L-lactic acid) (PLLA), poly(${\varepsilon}$-caprolactone) (PCL) and polyethylene oxide (PEO) were produced with different concentrations of components via melt blending. By leaching the PEO from the samples by water, porous materials were obtained with potential application for bio scaffolds. Sample porosity was evaluated by calculating the ratio of porous scaffold density (${\rho}^*$) to the non-porous material density (${\rho}_s$). Highest porosity (51.42%) was related to the samples containing 50 wt%. of PEO. Scanning electron microscopy (SEM) studies showed the best porosity resulted by decreasing PLLA/PCL ratio at constant concentration of PEO. Crystallization behavior of the ternary blend samples was studied using differential scanning calorimetry (DSC). Results revealed that the crystallinity of PLLA was improved by addition of PEO and PCL to the samples. The porosity plays a key role in governing the compression properties. Mechanical properties are presented by Gibson-Ashby model.

Application of aqueous carbonated slags in the immobilization of heavy metals in field-contaminated soils

  • Choi, Jiyeon;Shin, Won Sik
    • Environmental Engineering Research
    • /
    • 제25권3호
    • /
    • pp.356-365
    • /
    • 2020
  • The aqueous carbonation efficiencies of basic oxygen furnace (BOF) and ladle slags at various pressures, temperatures, and liquid-to-solid (L/S) ratios were investigated to determine optimum conditions. The maximum CO2 carbonated concentrations in slag (0.584 mmol/g for BOF slag and 1.038 mmol/g for ladle slag) was obtained at 10 bars, 40℃, and L/S = 5 mL/g-dry. The L/S ratio was the most critical parameter for carbonation. The effect of carbonated slag amendment on the immobilization of heavy metals in two field-contaminated soils was also investigated. The immobilization efficiencies evaluated by using the toxicity characteristic leaching procedure (TCLP) and the Standards, Measurements and Testing Programme (SM&T) were above 90% for both raw and carbonated slags for all soils. The TCLP-extractable heavy metals concentrations were below the criteria (5.0, 1.0 and 5.0 g/L for Pb, Cd, and Cr, respectively) after immobilizations with both slags except for Pb in soil B. The SM&T analysis showed the decrease in the exchangeable phase but the increase in residual phase after immobilization with raw and carbonated slags. The results of this study imply the promising potential of the carbonated slags on the immobilization of heavy metals in the field-contaminated soils.

혐기성 소화액의 농지환원에 따른 질소 거동 (Assessment of Nitrogen Fate in the Soil by Different Application Methods of Digestate)

  • 은콤보 로리 리셋 시미;홍성구
    • 한국농공학회논문집
    • /
    • 제63권3호
    • /
    • pp.35-45
    • /
    • 2021
  • Digestate or slurry produced from anaerobic digestion is mostly applied to crop lands for its disposal and recovering nutrients. However, minimizing nitrogen losses following field application of the digestate is important for maximizing the plant's nitrogen uptake and reducing environmental concerns. This study was conducted to assess the effects of three different biogas digestate application techniques (sawdust mixed with digestate (SSD), the hole application method (HA), and digestate injected in the soil (SD)) on nitrate leaching potential in the soil. A pot laboratory experiment was conducted at room temperature of 25 ± 2 ℃ for 107 days. The experimental results showed that sawdust application method turned out to be appropriate for quick immobilization of surplus N in the form of microbial biomass N, reflecting its lower total nitrogen and NH4-N contents and low pH. The NH4-N and total nitrogen fate in the soil fertilized with manure showed no statistically significant (p > 0.05) differences between the different methods applied during the incubation time under room temperature. In contrast, NO3-N concentration indicates significant reduction in sawdust treatment (p < 0.05) compared to the control and other application methods. However, the soil sawdust mixed with digestate was more effective than the other methods, because of the cumulative labile carbon contents of the amendment, which implies soil net N immobilization.

Immobilization of Prussian blue nanoparticles in acrylic acid-surface functionalized poly(vinyl alcohol) sponges for cesium adsorption

  • Wi, Hyobin;Kang, Sung-Won;Hwang, Yuhoon
    • Environmental Engineering Research
    • /
    • 제24권1호
    • /
    • pp.173-179
    • /
    • 2019
  • Prussian blue (PB) is known to be an effective material for radioactive cesium adsorption, but its nano-range size make it difficult to be applied for contaminated water remediation. In this study, a simple and versatile approach to immobilize PB in the supporting matrix via surface functionalization was investigated. The commercially available poly vinyl alcohol (PVA) sponge was functionalized by acrylic acid (AA) to change its major functional group from hydroxyl to carboxylic, which provides a stronger ionic bond with PB. The amount of AA added was optimized by evaluating the weight change rate and iron(III) ion adsorption test. The FTIR results revealed the surface functional group changing to a carboxyl group. The surface functionalization enhanced the attachment of PB, which minimized the leaching out of PB. The $Cs^+$ adsorption capacity significantly increased due to surface functionalization from 1.762 to 5.675 mg/g. These findings showed the excellent potential of the PB-PAA-PVA sponge as a cesium adsorbent as well as a versatile approach for various supporting materials containing the hydroxyl functional group.

지하수 중 카드뮴 저감 방안에 대한 고찰 (Review on the Remediation Method for Groundwater Contaminated with Cadmium)

  • 권종범;박선화;김덕현;윤종현;최현희;김문수;김영;신선경;김현구
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권4호
    • /
    • pp.22-36
    • /
    • 2022
  • Cadmium is a class 1 carcinogen classified by the International Agency for Research on Cancer (IARC) and has a high potential for leaching into groundwater. Therefore, it is necessary to address cadmium contamination by employing adequate treatment methodologies. Although various methods have been suggested to reduce cadmium in groundwater, their applications often suffer from various limitation arising from heterogeneous field conditions and technical difficulties. In this work, several in-situ technologies to treat cadmium contaminated groundwater were reviewed and discussed by separately addressing physicochemical, chemical and biological methods. In particular, the optimum cadmium remediation strategies that involve physical removal of source area → physicochemical and chemical remediation → biological remediation were proposed by considering reduction efficiency, adsorption rate, economic feasibility and ease of field application in groundwater.

Simulation of Soil Hydrological Components in Chuncheon over 30 years Using E-DiGOR Model

  • Aydin, Mehmet;Jung, Yeong-Sang;Yang, Jae-E.;Lee, Hyun-Il;Kim, Kyung-Dae
    • 한국토양비료학회지
    • /
    • 제45권4호
    • /
    • pp.484-491
    • /
    • 2012
  • The hydrological components of a sandy loam soil of nearly level in Chuncheon over 30 years were computed using the E-DiGOR model. Daily simulations were carried out for each year during the period of 1980 to 2009 using standard climate data. Reference evapotranspiration and potential soil evaporation based on Penman-Montheith model were higher during May to August because of the higher atmospheric evaporative demand. Actual soil evaporation was mainly found to be a function of the amount and timing of rainfall, and presumably soil wetness in addition to atmospheric demand. Drainage was affected by rainfall and increased with a higher amount of precipitation and soil water content. Excess drainage occurred throughout rainy months (from July to September), with a peak in July. Therefore, leaching may be a serious problem in the soils all through these months. The 30-year average annual reference evapotranspiration and potential soil evaporation were 951.5 mm and 714.2 mm, respectively. The actual evaporation from bare soil varied between 396.9-528.4 mm and showed comparatively lesser inter-annual variations than drainage. Annual drainage rates below 120 cm soil depth ranged from 477.8 to 1565.9 mm. The long-term mean annual drainage-loss was approximately two times higher than actual soil evaporation.

염산 수용액 중에서 Au와 Pd의 전기화학적 거동에 관한 연구 (A Study on the Electrochemical Behavior of Au and Pd in Hydrochloric Acidic Solution)

  • 유연태;김치권
    • 한국재료학회지
    • /
    • 제11권2호
    • /
    • pp.76-81
    • /
    • 2001
  • 전자산업 폐기물의 산침출 용액으로부터 전해채취법에 의해 Au와 Pd를 선택적으로 회수하기 위하여, 염산수용액 중에서 Au와 Pd의 전기화학적 거동을 voltammetry방법에 의해 조사하였다. Au단독 전해욕에서 Au의 환원전위는 약 800mV이었고 환원한계전류는 약 470mV에서 나타났으며, Pd 단독 전해욕에서 Pd의 환원전위는 약 500mV이었고 환원한계전류는 약 150mV에서 나타났다. 그러나, Au-Pd혼합 전해용액에서, Au의 환원전위 및 환원한계전위 값은 전해욕 중 Pd의 농도가 증가함에 따라 감소하였고, Au와 Pd의 환원한계전위 값은 Au-Pd 전해욕 중 Pd 전해용액의 함유량이 30vo1%일 때 가장 가까운 값을 나타내었다

  • PDF

바이오-플로팅시스템을 통한 Tailor-Made 3D PCL Scaffold 제작 (Fabrication of Tailor-Made 3D PCL Scaffold Using a Bio-Plotting Process)

  • 손준곤;김근형;박수아;김완두
    • 폴리머
    • /
    • 제32권2호
    • /
    • pp.163-168
    • /
    • 2008
  • 생체 친화적이며 생분해성 고분자 소재인 poly($\varepsilon$-caprolactone)(PCL)을 rapid prototyping(RP) 공정인 바이오플로팅 시스템을 통해 세포 재생용 지지체(scaffold)를 제작하였다. 제작된 PCL 지지체는 DMA(dynamic mechanical analyzer)를 통해 동일한 재료로 제작된 기존 염침출법(salt-leaching)에 의한 지지체보다 월등히 향상된 기계적 강도를 갖고 있음을 확인하였고, 이는 기존 전통적인 세포지지체 제작에서 문제점중의 하나인 기계적인 강도적인 측면을 보완하여, 뼈조직 재생에 유용하게 활용될 수 있을 것으로 예상된다. 지지체 내부의 구조는 세포의 증식과 이동 및 영양분의 공급이 지속될 수 있도록 전체적으로 연결된 통로로 구성되어 있고, 다양한 세포의 증식이 가능하도록 지지체의 공극 크기와 strand의 굵기 등을 조절할 수 있으며, 이를 이용하여 대체하고자 하는 생체조직의 특성에 맞도록 기계적 강도를 조정할 수 있음을 확인하였다. 제조된 PCL지지체는 연골세포를 통하여 셀 컬쳐링 되었고, 3차원 세포 지지체로서의 충분한 가능성을 보여주었다.