• Title/Summary/Keyword: Leaching Process

Search Result 374, Processing Time 0.024 seconds

Numerical simulation on integrated curing-leaching process of slag-blended cement pastes

  • Xiang-Nan Li;Xiao-Bao Zuo;Yu-Xiao Zou;Guang-Pan Zhou
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.45-60
    • /
    • 2023
  • Concrete in water environment is easily subjected to the attack of leaching, which causes its mechanical reduction and durability deterioration, and the key to improving the leaching resistance of concrete is to increase the compaction of its microstructure formed by the curing. This paper performs a numerical investigation on the intrinsic relationship between microstructures formed by the hydration of cement and slag and leaching resistance of concrete in water environment. Firstly, a shrinking-core hydration model of blended cement and slag is presented, in which the interaction of hydration process of cement and slag is considered and the microstructure composition is characterized by the hydration products, solution composition and pore structure. Secondly, based on Fick's law and mass conservation law, a leaching model of hardened paste is proposed, in which the multi-species ionic diffusion equation and modified Gérard model are established, and the model is numerically solved by applying the finite difference method. Finally, two models are combined by microstructure composition to form an integrated curing-leaching model, and it is used to investigate the relationship between microstructure composition and leaching resistance of slag-blended cement pastes.

Recovery of Nickel from Spent Petroleum Catalyst by Hydrometallurgical Process (습식제련공정에 의한 석유화학 폐촉매로부터 니켈의 회수)

  • Kim, Jong-Hwa;Song, Ju-Yeong;Yang, Seok-Jin;Jeon, Sung-Gyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.273-281
    • /
    • 2010
  • Nickel recovery method was studied by the wet process from the catalyst used in hydrogenation process. Nickel content in waste catalyst was about 16%. At the waste catalyst leaching system by the alkaline solution, selective leaching of nickel was possible by amine complex formation reaction from ammonia water and ammonium chloride mixed leachate. The best leaching condition of nickel from mixed leachate was acquired at the condition of pH 8. LIX65N as chelating solvent extractant was used to recover nickel from alkaline leachate. The purity of recovered nickel was higher than 99.5%, and the whole quantity of nickel was recovered from amine complex.

Nutrient Leaching from Leaf Litter of Cropland Agroforest Tree Species of Bangladesh

  • Hasanuzzaman, Md.;Hossain, Mahmood
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.2
    • /
    • pp.208-217
    • /
    • 2014
  • Leaf litter is the main and quick source of organic matter and nutrient to the soil compared to other parts of litter. This study focused on the nutrients (N, P and K) leaching from leaf litter of Melia azadirachta, Azadirachta indica, Eucalyptus camaldulensis, Swietenia macrophylla, Mangifera indica, Zizyphus jujuba, Litchi chinensis, Albizia saman, Artocarpus heterophyllus, Acacia auriculiformis, Dalbergia sissoo and Khaya anthotheca as the common cropland agroforest tree species of Bangladesh. About (9 to 35) % of initial mass was lost, while Electric Conductivity (EC) and TDS (Total Dissolved Solid) of leaching water increased to (573 to 3,247) ${\mu}S/cm$ and (401 to 2,307) mg/l respectively after 192 hours of leaching process. Mass loss (%) of leaf litter, EC and TDS of leaching water showed significant (ANOVA, p<0.05) curvilinear relationship with leaching time. Initial concentration of NH4, PO4 and K in leaching water was found to increase significantly (p<0.05) up to 48/72 hours and then remained almost constant at later stages (48/72 to 192 hours). Mass loss of leaves; EC, TDS, $NH_4$, $PO_4$ and K in leaching water was varied also significantly (ANOVA, p<0.05) among the studied tree species. All the tree species showed similar pattern of nutrients (K>N>P) release during the leaching process. The highest $NH_4$ (4,097 ppm) and potassium (8,904 ppm) concentration was found for M. azadirachta while the highest $PO_4$ (1,331 ppm) concentration was found for E. camaldulensis in the leaching water. Among the studied tree species, M. azadirachta, A. indica, D. sissoo, E. camaldulensis and Z. jujuba was selected as the best tree species with respect to nutrient leaching.

Separation and Recovery of Rare Earth Elements from Phosphor Sludge of Waste Fluorescent Lamp by Pneumatic Classification and Sulfuric Acidic Leaching

  • Takahashi, Touru;Takano, Aketomi;Saitoh, Takayuki;Nagano, Nobuhiro;Hirai, Shinji;Shimakage, Kazuyoshi
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.421-426
    • /
    • 2001
  • The pneumatic classification and acidic leaching behaviors of phosphor sludge have been examined to establish the recycling system of rare earth components contained in waste fluorescent lamp. At first, separation characteristic of rare earth components and calcium phosphate in phosphor sludge was investigated by pneumatic classification. After pneumatic classification of phosphor sludge, rare earth components were leached in various acidic solutions and sodium hydroxide solution. For recovery of soluble component in leaching solution, rare earth components were separated as hydroxide and oxalate precipitations. The experimental results obtained are summarized as follows: (1) In classification process, rare earth components in phosphor sludge were concentrated to 29.3% from 13.3%, and its yield was 32.9%. (2) In leaching process, sulfuric acid solution was more effective one as a leaching solvent of rare earth component than other solutions. Y and Eu components in phosphor sludge were dissolved in sulfuric acid solution of 1.5 k㏖/㎥, and other rare earth components were rarely dissolved in leaching solution. Leaching degrees of Y and Eu were respectively 92% and 98% in the following optimum leaching conditions; sulfuric acid concentration is 1.5 k㏖/㎥ , leaching temperature 343 K, leaching time 3.6 ks and pulp concentration 30 kg/㎥. (3) Y and Eu components of phosphor sludge contained in waste fluorescent lamp were, effectively recovered by three processes of pneumatic classification, sulfuric acid leaching and oxalate precipitation methods. Their recovery was finally about 65 %, and its purity was 98.2%.

  • PDF

Extraction of Valuable Metals from Spent Desulfurizing Catalyst (탈황(脫黃) 폐촉매(廢觸媒)로부터 유가금속(有價金屬) 추출(抽出))

  • Pradhan, Debabrata;Kim, Dong-Jin;Baik, Seung-Bai;Lee, Seoung-Won
    • Resources Recycling
    • /
    • v.20 no.3
    • /
    • pp.48-54
    • /
    • 2011
  • Sulphuric acid leaching was conducted to extract the metal values from spent refinery catalyst. More than 95% of Ni and V and 30% of Mo could be leached out in 1 M sulphuric acid and 1 hr of leaching time. The decrease in Mo leaching was due to typical characteristic of Mo matrix. The activation energies of the leaching reactions showed the dissolution process follows a diffusion control mechanism. In order to leach out all Mo, further the leaching experiments were conducted with sulfur free spent refinery catalyst. For sulfur free spent refinery catalyst, a two step process of leaching with 1 M sulphuric acid followed by sodium carbonate washing showed better leaching than a two step leaching process with sodium carbonate followed by sulphuric acid washing, with almost 99% leaching of Ni, Mo and V. Solvent extraction using LIX 841 were conducted for a leach liquor containing Ni, 2 g/L; V, 9 g/L, Mo, 0.6 g/L. More than 98% of Mo was extracted from the leach liquor at A:O ratio of 5:2 in a 2 stage process. Similarly V was extracted at A:O ratio of 5:3 in a 2 stage process with 82% of total V extraction.

Enhanced ion-exchange properties of clinoptilolite to reduce the leaching of nitrate in soil

  • Kabuba, John
    • Analytical Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.41-52
    • /
    • 2022
  • The leaching of nitrate from soil increases the concentration of elements, such as nitrogen, phosphorus, and potassium, in water, causing eutrophication. In this study, the feasibility of using clinoptilolite as an ion-exchange material to reduce nitrate leaching in soil was investigated. Soil samples were collected from three soil depths (0 - 30, 30 - 90, and 90 - 120 cm), and their sorption capacity was determined using batch experiments. The effects of contact time, initial concentration, adsorbent dosage, pH, and temperature on the removal of NO3- were investigated. The results showed that an initial concentration of 25 mg L-1, a contact time of 120 min, an adsorbent dosage of 5.0 g/100 mL, a pH of 3, and a temperature of 30 ℃ are favorable conditions. The kinetic results corresponded well with a pseudo-second-order rate equation. Intra-particle diffusion also played a significant role in the initial stage of the adsorption process. Thermodynamic studies revealed that the adsorption process is spontaneous, random, and endothermic. The results suggest that a modification of clinoptilolite effectively reduces the leaching of nitrate in soil.

Mineralogical studies and extraction of some valuable elements from sulfide deposits of Abu Gurdi area, South Eastern Desert, Egypt

  • Ibrahim A. Salem;Gaafar A. El Bahariya;Bothina T. El Dosuky;Eman F. Refaey;Ahmed H. Ibrahim;Amr B. ElDeeb
    • Analytical Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.47-62
    • /
    • 2024
  • Abu Gurdi area is located in the South-eastern Desert of Egypt which considered as volcanic massive sulfide deposits (VMS). The present work aims at investigating the ore mineralogy of Abu Gurdi region in addition to the effectiveness of the hydrometallurgical route for processing these ores using alkaline leaching for the extraction of Zn, Cu, and Pb in the presence of hydrogen peroxide, has been investigated. The factors affecting the efficiency of the alkaline leaching of the used ore including the reagent composition, reagent concentration, leaching temperature, leaching time, and Solid /Liquid ratio, have been investigated. It was noted that the sulfide mineralization consists mainly of chalcopyrite, sphalerite, pyrite, galena and bornite. Gold is detected as rare, disseminated crystals within the gangue minerals. Under supergene conditions, secondary copper minerals (covellite, malachite, chrysocolla and atacamite) were formed. The maximum dissolution efficiencies of Cu, Zn, and Pb at the optimum leaching conditions i.e., 250 g/L NaCO3 - NaHCO3 alkali concentration, for 3 hr., at 250 ℃, and 1/5 Solid/liquid (S/L) ratio, were 99.48 %, 96.70 % and 99.11 %, respectively. An apparent activation energy for Zn, Cu and Pb dissolution were 21.599, 21.779 and 23.761 kJ.mol-1, respectively, which were between those of a typical diffusion-controlled process and a chemical reaction-controlled process. Hence, the diffusion of the solid product layer contributed more than the chemical reaction to control the rate of the leaching process. High pure Cu(OH)2, Pb(OH)2, and ZnCl2 were obtained from the finally obtained leach liquor at the optimum leaching conditions by precipitation at different pH. Finally, highly pure Au metal was separated from the mineralized massive sulfide via using adsorption method.

A Study on the Stabilization/ Solidification Process Using Blast Furnace Slag (슬래그를 이용한 중금속 이온의 고정화)

  • 강성근;방완근;이승헌;김창은
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.7
    • /
    • pp.725-733
    • /
    • 1999
  • It is a fundamental experiment to use blast-furnace slag in solidification/stabilization process. The compressive strength and leaching test of Pb and Cr doped samples were evaluated and the effects of heavy-metal ions on the hydration of slag was investigated. Sodium silicates(5wt%) was added as alkali-activator and the effects of replacing a part of slag with flyash or gypsum was also discussed. Pb ion was solidified by encapsulation of matrix. In of slag${\pm}$gypsum binder microstructure was densified by accelerating to form AFt/AFm phase and compressive strength was improved resulting in reducing leaching amount of Pb ion. Cr ion was solidified by substituting with Al ion in aluminate product. Slag+fly ash binder improved compressive strength and decreased leaching amount of Cr ion.

  • PDF

Reduction Leaching of Manganese Dioxide Ore Using Black Locust as Reductant in Sulfuric Acid Solution

  • Xue, Jianrong;Zhong, Hong;Wang, Shuai;Li, Changxin;Li, Jinzhong;Wu, Fangfang
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.509-516
    • /
    • 2015
  • We investigated the reduction leaching process of manganese dioxide ore using black locust as reductant in sulfuric acid solution. The effect of parameters on the leaching efficiency of manganese was the primary focus. Experimental results indicate that manganese leaching efficiency of 97.57% was achieved under the optimal conditions: weight ratio of black locust to manganese dioxide ore (WT) of 4:10, ore particle size of $63{\mu}m$, $1.7mol{\cdot}L^{-1}\;H_2SO_4$, liquid to solid ratio (L/S) of 5:1, leaching time of 8 h, leaching temperature of 368 K and agitation rate of $400r{\cdot}min^{-1}$. The leaching rate of manganese, based on the shrinking core model, was found to be controlled by inner diffusion through the ash/inert layer composed of associated minerals. The activation energy of reductive leaching is $17.81kJ{\cdot}mol^{-1}$. To conclude the reaction mechanism, XRD analysis of leached ore residue indicates manganese compounds disappear; FTIR characterization of leached residue of black locust sawdust shows hemicellulose and cellulose disappear after the leaching process.

Recycling of EAF Dust by Semi-continuous High Kinetic Process

  • Zoz, H.;Kaupp, G.;Ren, H.;Goepel, K.;Naimi-Jamal, M. R.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.491-492
    • /
    • 2006
  • The horizontal high energy rotor ball mill ($Simoloyer^{(R)}$) is used to break and activate dry solids. It is used for dry-milling and in the vertical mount for wet-milling in leaching processes. Technical electric arc furnace (EAF) dust with high contents of zinc oxide, zinc ferrite and magnetite is efficiently separated by ambient temperature leaching. The process shows promise for industrial application

  • PDF