• 제목/요약/키워드: Leaching Process

검색결과 374건 처리시간 0.02초

WC/Co 초경합금 가공 슬러지로부터 알칼리침출 정련공정에 의한 W 회수 (Recovery of Tungsten from WC/Co Hardmetal Sludge by Alkaline Leaching Hydrometallurgy Process)

  • 이길근;권지은
    • 한국분말재료학회지
    • /
    • 제23권5호
    • /
    • pp.372-378
    • /
    • 2016
  • This study focuses on the development of an alkaline leaching hydrometallurgy process for the recovery of tungsten from WC/Co hardmetal sludge, and an examination of the effect of the process parameters on tungsten recovery. The alkaline leaching hydrometallurgy process has four stages, i.e., oxidation of the sludge, leaching of tungsten by NaOH, refinement of the leaching solution, and precipitation of tungsten. The WC/Co hardmetal sludge oxide consists of $WO_3$ and $CoWO_4$. The leaching of tungsten is most affected by the leaching temperature, followed by the NaOH concentration and the leaching time. About 99% of tungsten in the WC/Co hardmetal sludge is leached at temperatures above $90^{\circ}C$ and a NaOH concentration above 15%. For refinement of the leaching solution, pH control of the solution using HCl is more effective than the addition of $Na_2S{\cdot}9H_2O$. The tungsten is precipitated as high-purity $H_2WO_4{\cdot}H_2O$ by pH control using HCl. With decreasing pH of the solution, the tungsten recovery rate increases and then decrease. About 93% of tungsten in the WC/Co hardmetal sludge is recovered by the alkaline leaching hydrometallurgy process.

Ammonium Chloride Solution Leaching of Crude Zinc Oxide Recovered from Reduction of EAF′s Dust

  • Youn, Ki-Byoung
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.365-369
    • /
    • 2001
  • EAF's dust has been treated mainly by pyrometallurgical reduction process in rotary kiln furnace to recover valuable metal elements such as Zn and to avoid the disposal of hazardous materials to waste. Recently, hydrometallurgical eletrowinning of zinc from a zinc-amino chloride solution obtained by the leaching of EAF's dust was developed to recover high grade zinc metal from EAF’s dust. But there are some disadvantages in each process such as difficulty of operation condition control and sticking problem in kiln process and low extractability and recovery of zinc owing to insoluble zinc-ferrite in electrowinning process. We propose a new combined process of pyrometallurgical one and hydrometallurgical one to treat EAF's dust efficiently and economically. In this study, ammonium chloride solution leaching of crude zinc oxide recovered from reduction of EAF's dust was carried out to find out the efficiency of zinc extraction from it and the possibility for performance of eletrowinning in the proposed process. Effects of various leaching variables ruck as leaching temperature, concentration of leaching solution and leaching time were investigated. And the leaching results of the crude zinc oxide were compared with those of EAF's dust. The extraction percents of zinc in ammonium chloride solution leaching of the crude zinc oxide recovered from reduction of EAF's dust were above 80% after 60 minutes of leaching under the leaching condition of 4M NH$_4$CI concentration and above leaching temperature of 7$0^{\circ}C$. And the concentrations of zinc in the leached solution were obtained above 50g/$\ell$. The activation energy calculated for zinc extraction in NH$_4$CI leaching was 58.1 KJ/㏖ for EAF's dust and 15.8 KJ/㏖ for the crude zinc oxide recovered from reduction of EAF's dust.

  • PDF

Nutrient Leaching from Leaf Litter of Emergent Macrophyte(Zizania latifolia) and the Effects of Water Temperature on the Leaching Process

  • Park, Sangkyu;Cho, Kang-Hyun
    • Animal cells and systems
    • /
    • 제7권4호
    • /
    • pp.289-294
    • /
    • 2003
  • To quantify nutrient loading from emergent macrophytes through leaching in the littoral zones of Paldang Reservoir, we conducted incubation experiments using leaf litter of the emergent macrophyte, Zizaniz latifolia. To separate the leaching process from microbial decay, we used $HgCl_2$ to suppress microbial activity during the experiment. We measured electric conductivity, absorbance at 280nm, total nitrogen and dissolved inorganic nitrogen, total phosphorus and soluble reactive phosphorus, Na, K, Mg and Ca amounts in leaf litter and in water. In addition, we examined the effects of water temperature and ion concentrations of ambient water on the leaching process. A total of 6% of the initial ash-free dry mass of leaf litter was lost due to leaching during incubation (four days). Electric conductivity and A280 continued to increase and saturate during the incubation. To compare reaching rates of different nutrients, we fitted leaching dynamics with a hyperbolic saturation function [Y=AㆍX/(B+X)]. From these fittings, we found that ratios of leaching amounts to nutrient concentration in the litter were in the order of K > Na > Mg > P > Ca > N. Leaching from leaf litter of Z. latifolia was dependent on water temperature while it was not related with ion concentrations in the ambient water. Our results suggest that the leaching process of nutrients, especially phosphorus, from aquatic macrophytes provides considerable contribution to the eutrophication of the Paldang Reservoir ecosystem.

2단계 침출 과정에서 발생되는 비산회로부터 초음파 활용하여 이트륨과 네오디뮴의 동시 추출 (Simultaneous Extraction of Yttrium and Neodymium from Fly Ash by Two-Step Leaching Process with Aid of Ultrasonic Wave)

  • Kim, Jae-Kwan;Park, Seok-Un
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권1호
    • /
    • pp.153-159
    • /
    • 2021
  • A two-step process for increasing the leaching efficiency of yttrium and neodymium from coal fly ash were investigated at solid loadings of 5.0 g ash ~1,000 g ash/l of 1.0 N~10.0 N H2SO4, temperature ranging from 30℃ to 90℃, ultrasonic leaching time of 1~10 hours, and ultrasonic power of 25~200 W. The yttrium and neodymium from coal fly ash were effectively leached into ion phases by step change of the first conventional dissolution at room temperature and then the second heating process with the aid of ultrasonic wave, and maximum leaching efficiency of yttrium and neodymium obtained were 66 % and 63 %, respectively. The activation energies for the leaching reaction of yttrium and neodymium at second heating process dependent on leaching time and temperature were derived to be 41.540 kJmol-1 and 507.92 kJmol-1, respectively. The optimum conditions for the maximum leaching of yttrium and neodymium were found to be the solid loading of 250 g ash/l of H2SO4, solvent concentration of 2.0 N H2SO4, and second step process of temperatures of 30℃ for 3 hours and then 90℃ for 4 hours with ultrasonic intensity of 100 W.

니켈-몰리브데늄 성분계 폐촉매로부터 니켈의 선택적 회수 (Selective Ni Recovery from Spent Ni-Mo-Based Catalysts)

  • 이태교;한기보;윤석훈;이태진;박노국;장원철
    • 공업화학
    • /
    • 제19권6호
    • /
    • pp.668-673
    • /
    • 2008
  • 본 연구의 목적은 니켈-몰리브데늄 성분계 폐촉매로부터 니켈 성분의 선택적 회수를 위한 습식 침출 및 추출공정에서의 반응조건 최적화이다. 폐촉매로부터 니켈 성분의 선택적 회수를 위한 과정으로 침출제를 사용하여 폐촉매로부터 니켈 성분을 용액으로 용해시키는 침출공정과 니켈 성분을 포함한 다양한 금속 성분들의 용액으로부터 니켈 성분의 선택적 추출공정으로 이루어진 2단계 공정이다. 침출공정에서는 필요한 다양한 침출제로 질산($HNO_3$), 탄산나트륨($Na_2CO_3$) 및 탄산암모늄($(NH_4)_2CO_3$) 수용액 등이 사용되었으며, 추출제로 옥살산 수용액이 사용되었다. 침출공정에서 니켈성분을 효과적으로 용해시킬 수 있는 침출제는 질산 수용액이었으며, 최적화된 온도, 침출제농도, 반응시간 등은 각각 $90^{\circ}C$, 6.25 vol%, 3 h이었다. 이러한 최적화된 침출공정 및 추출공정으로부터 얻어진 니켈 화합물은 니켈 옥살레이트로 확인되었으며, 니켈 성분의 회수율 및 순도는 각각 88.7% 및 100%였다.

Reusing the Liquid Fraction Generated from Leaching and Wet Torrefaction of Empty Fruit Bunch

  • Lee, Jae-Won;Choi, Jun-Ho;Im, Hyeon-Soo;Um, Min;Lee, Hyoung-Woo
    • Korean Chemical Engineering Research
    • /
    • 제57권3호
    • /
    • pp.372-377
    • /
    • 2019
  • Leaching ($60^{\circ}C$, 5 min) and wet torrefaction ($200^{\circ}C$, 5 min) of empty fruit bunch (EFB) were carried out to improve the fuel properties; each liquid fraction was reused for leaching and wet torrefaction, respectively. In the leaching process, potassium was effectively removed because the leaching solution contained 707.5 ppm potassium. Inorganic compounds were accumulated in the leaching solution by increasing the reuse cycle of leaching solution. The major component of the leached biomass did not differ significantly from the raw material (p-value < 0.05). Inorganic compounds in the biomass were more effectively removed by sequential leaching and wet torrefaction (61.1%) than by only the leaching process (50.1%) at the beginning of the liquid fraction reuse. In the sequential leaching and wet torrefaction, the main hydrolysate component was xylose (2.36~4.17 g/L). This implied that hemicellulose was degraded during wet torrefaction. As in the leaching process, potassium was effectively removed and the concentration was accumulated by increasing the reuse cycle of wet torrefaction hydrolysates. There was no significant change in the chemical composition of wet torrefied biomass, which implied that fuel properties of biomass were constantly maintained by the reuse (four times) of the liquid fraction generated from leaching and wet torrefaction.

토양증기추출공정 중 오염물의 거동평가기법에 관한 연구

  • 조현정;권태순;양중석;양지원
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.354-355
    • /
    • 2003
  • In this study, a risk-based cleanup approach using the leaching potential was suggested for the soil vapor extraction (SVE) process. A multi-component model was adopted with local equilibrium assumption (LEA), and Raoult's law was applied to estimate the leaching potential for BTEX. Finally, a risk analysis was conducted based on the leaching pontential calculated. To complete the feasibility of this approach, more investigations and discussions will be required in future.

  • PDF

Seepage characteristics of the leaching solution during in situ leaching of uranium

  • Sheng Zeng ;Jiayin Song ;Bing Sun;Fulin Wang ;Wenhao Ye;Yuan Shen;Hao Li
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.566-574
    • /
    • 2023
  • Investigating the seepage characteristics of the leaching solution in the ore-bearing layer during the in situ leaching process can be useful for designing the process parameters for the uranium mining well. We prepared leaching solutions of four different viscosities and conducted experiments using a self-developed multifunctional uranium ore seepage test device. The effects of different viscosities of leaching solutions on the seepage characteristics of uranium-bearing sandstones were examined using seepage mechanics, physicochemical seepage theory, and dissolution erosion mechanism. Results indicated that while the seepage characteristics of various viscosities of leaching solutions were the same in rock samples with similar internal pore architectures, there were regular differences between the saturated and the unsaturated stages. In addition, the time required for the specimen to reach saturation varied with the viscosity of the leaching solution. The higher the viscosity of the solution, the slower the seepage flow from the unsaturated stage to the saturated stage. Furthermore, during the saturation stage, the seepage pressure of a leaching solution with a high viscosity was greater than that of a leaching solution with a low viscosity. However, the permeability coefficient of the high viscosity leaching solution was less than that of a low viscosity leaching solution.

휴폐광산의 중금속제어를 위한 융합공정 개발 (Convergence Process for the Removal of Heavy Metals in the Abandoned Mine)

  • 도현승
    • 한국융합학회논문지
    • /
    • 제7권1호
    • /
    • pp.155-160
    • /
    • 2016
  • 청양지역 폐광산의 오염원인인 중금속의 제거를 침출과 이온교환법을 활용한 융합공정을 통해 실험하였으며 중금속에 오염된 토양시료는 통계처리를 하여 분석하였다. 오염토양은 일차로 부선처리법으로 분리하였으며, 사용시약이 증가할수록 선별지수는 증가하였다. 중금속을 제거하기 위한 침출과 이온분리법에 의해 선별도는 더 향상이 되었다. 침출속도는 황산용액이 증가할수록 증가되었으며, 침출용액은 이온교환법에 의해 상당부분 제거가 되었다. 침출과 이온교환법이 결합된 연속융합공정을 개발하여 중금속 제거 실험을 하였으며, 향후 개선을 통해 중금속의 제거효과가 향상될 것이며, 이를 통해 폐광산의 오염토양에 적용 가능함을 알 수 있었다.

소성온도에 따른 제지공정 슬러지의 중금속 용출특성 연구 (Heavy Metal Leaching Characteristics of Sludge from Paper Mill Process with Sintering Temperature)

  • 박준석;고재철;김승호;박영구;전제열
    • 한국응용과학기술학회지
    • /
    • 제26권1호
    • /
    • pp.80-86
    • /
    • 2009
  • This research was performed to evaluate heavy metal leaching characteristics of the sludge from paper mill process with sintering temperature. Heavy metal leaching of the sludge was characterized with Korean Leaching Test and Toxicity Characteristic Leaching Procedure. The test sludge was composed of 70.72% of moisture, 9.5% of volatile solids and 9.76% of fixed solids. As a result of XRF analysis, Fe was the highest inorganic element in approximately 83%, which implies the recycling possibility of the sludge in reuse of Fenton chemicals and artificial lightweight aggregate. Leaching of heavy metals from sintered sludge was lower than the dry ones. However, there was no significant difference in leaching characteristics between the sludges sintered at $350^{\circ}C$ and $650^{\circ}C$. Zn and Fe were leached more greatly in TCLP and KLT methods respectively.