• Title/Summary/Keyword: Leachability

Search Result 74, Processing Time 0.019 seconds

An Experimental Study on Factors Affecting the Leachability of Cs-137 in Cement Matrix and Leaching Model with Backfill (시멘트 고화체내 Cs-137의 침출능에 영향을 미치는 인자에 대한 실험적 연구와 뒷채움재를 고려한 침출 모델)

  • Park, Jong-Kil;Lee, Kun-Jai
    • Nuclear Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.374-386
    • /
    • 1991
  • Various factors affecting the teachability of Cs-137 in cement matrix have been investigated. Factors investigated include such as pressure curing, vibration curing, pressure leaching, the effect of the clay addition, ion-exchange resin(IRN-77) addition, and $CO_2$or air injection. Leaching experiments were conducted by the method recommended by IAEA. To analyze the experimental results, pore structure analysis of cement matrices was carried out by BET method. Cement matrices may not contact directly with underground water in real repository, since the surroundings of disposed drums are filled with backfill. Thus, the effect of backfill to the teachability has been investigated. The well-known diffusion theory was utilized to predict long term leach rate and cumulative fraction leached of Cs-137 or non-radioactive species.

  • PDF

A Study on the Characteristics and Utilization of Ash from Sewage Sludge Incinerator (하수(下水)슬러지 소각재의 특성(特性) 평가(評價) 및 재활용(再活用)을 위한 기초연구(基礎硏究))

  • Lee, Hwa-Young
    • Resources Recycling
    • /
    • v.17 no.3
    • /
    • pp.3-9
    • /
    • 2008
  • The measurement of physicochemical properties and chemical composition of SSA(sewage sludge ash) has been carried out and the preparation of lightweight material has also been performed using SSA for reuse as building or construction materials. For this aim, lightweight material has been prepared by forming the mixture of SSA, lightweight filler and inorganic binder followed by calcination at elevated temperature and characterized in terms of density and compressive strength. The pH of fly ash was found to be slightly alkaline, pH 8.69, due to the addition of caustic soda in order to neutralize the acidic gas while the pH of bottom ash was 6.48 Heavy metal leachability based on the standard leach test was also found to be below the detection limit for Cd, Cu, Pb, As and Cr of SSA. As far as the compressive strength of lightweight material was concerned, the compressive strength of lightweight material using fly ash was higher than that of lightweight material using bottom ash.

Tungsten Recovery from Tungsten Carbide by Alkali Melt followed by Water Leaching (알칼리 용융 및 수 침출을 이용한 탄화텅스텐으로부터 텅스텐 회수)

  • Kim, Byoungjin;Kim, Suyun;Lee, Jaeryeong
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.91-96
    • /
    • 2017
  • Tungsten (W) recovery from tungsten carbide (WC) was researched by alkali melt followed by water leaching. The experiments of alkali melt were carried out with the change of the sort of alkali material, heating temperature, and the heating duration. Water leaching of W was performed in the fixed conditions ($25^{\circ}C$, 2 hr., slurry density: 10 g/L). From the mixture of WC and sodium nitrate ($NaNO_3$) in the molar ratio of 1:2, treated at $400^{\circ}C$ for 6 hours, only 63.3% of W might be leached by water leaching. With the increase of sodium hydroxide (NaOH) as a melting additive, the leachability increased. Finally it reached to 97.8 % with the melted mixture of ($WC:NaNO_3:NaOH$) in the ratio of (1:2:2). This imply that NaOH may play a role as a reaction catalyst by lowering Gibb's free energy for alkali melt reaction for WC.

Assessment of applicability on Solidification/Stabilization of Arsenic in contaminated Soil According to the Revised Korean Standard Leaching Test for Soil (개정 토양용출시험법에 따른 비소오염토양의 고형화/안정화 공법 국내 적용성 평가)

  • Hong, Seong-Hyeok;Park, Hye-Min;Choi, Won-Ho;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • Arsenic is one of the most abundant contaminant found in waste mine tailings and soil around refinery, Because of its carcinogenic property, the countries like United States of America and Europe have made stringent regulations which govern the concentration of arsenic in soil. The study focuses on solidification/stabilization for removal of arsenic from soil. Cement was used to solidify/stabilize the abandoned soil primarily contaminated with arsenic (up to 68.92 mg/kg) in and around refinery. Solidified/stabilized (s/s) forms in the range of cement contents 5-30 wt % were evaluated to determine the optimal binder content. Revised Korean standard leaching tests (KSLT), toxicity characteristic leaching procedures (TCLP), Old Korea standard leaching test and revised Korea standard leaching test were used for chemical characterization of the S/S forms. The addition of 10 % cement remarkably reduced the leachability of arsenic in contaminated soil. The concentration of As in leachate of TCLP, KSLT, and old KSLT for soil are below the standard. However that in leachate of revised KSLT is above the standard. Because of extraction fluid used in revised KSLT is very strong acid. It is arsenic in s/s with binder should be exhaustingly leached. Therefore S/S process would not be available for As treatment in soil in Korea.

Water Leaching of Tungsten and Vanadium through Mechanochemical Reaction of Their Oxides and Alkali-Compounds (알칼리화합물과 텅스텐/바나듐산화물의 기계화학반응을 이용한 수 침출 연구)

  • Kim, Byoungjin;Kim, Suyun;Lee, Jaeryeong
    • Resources Recycling
    • /
    • v.27 no.4
    • /
    • pp.57-64
    • /
    • 2018
  • Water leaching of tungsten(W) and vanadium(V) was researched from their oxides through mechanochemical (MC) reaction with alkali compounds. Intensive grinding for the mixture of tungsten/vanadium oxide and alkali compounds (NaOH, $Na2CO_3$) was carried out with change of their mixing ratios and grinding duration. Water soluble compounds, $Na_2WO_4$ and $NaVO_3$, were synthesized through MC reaction and their solubilities increased in proportion to the mixing ratio of sodium compound and grinding times. Whereas vanadium leachability was less affected by the mixting ratio and grinding times. The leachabilities of 99.0% were accomplished by a short period of MC treatment, W (30 min.) and V (5 min.). This process enable us to extract W and V from their oxides via a water leaching, and can be applied to the selective recovery of W and V from $DeNO_x$ spent catalysts.

Evaluation of Lead, Copper, Cadmium, and Mercury Species in the Leachate of Steel Making Slag by Seawater (해수에 의한 제강 슬래그의 납, 구리, 카드뮴 및 수은 화합물의 용출특성 평가)

  • Lee, Han-Kook;Lee, Dong-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.75-84
    • /
    • 2005
  • The aim of this study is to evaluate the leaching characteristics of lead, copper, cadmium, and mercury from steel making slag by seawater. To demonstrate the leaching characteristics of heavy metals from steel making slag by seawater, it was carried to various leaching tests such as regular leaching tests, liquid/sold(LS) leaching test and pH static test. From the leachability of $Pb^{+2},\;Cu^{+2},\;and\;Cd^{+2}$ from steel making slag in pH static test, it is distinguished between distilled water and seawater. With distilled water, it is very low between pH 7-8 and pH 11-12. On the other hands, with the seawater, its leaching is higher than that of distilled water. In particular, concentration of $Hg^{+2}$ leached from slag by seawater is lower than that of distilled water. Meanwhile, we found that the heavy metals from steel making slag would be dissolved and precipitated using geochemcial equilibrium program such as visual minteq. Lead and copper leached from steel making slag with seawater were dissolved nearly in the range of pH 11-12, but in the range of pH 7-10 those were precipitated about 90%. And cadmium leached from steel making slag with seawater were dissolved completely. On pH static test with distilled water, lead leached from steel making slag seemed to be similar to pH static test with seawater. However, copper and cadmium leached from steel making slag were dissolved. In general, the species of lead leached from steel making slag were formed mainly of $PbCl^+,\;PbSO_4$, the species of copper were formed mainly of $CuSO_4,\;CuCO_3$, the species of cadmium were formed mainly of $CdCl^+,\;CdSO_4$ due to being sorbed with the anions($Cl^-,\;CO_3^{-2},\;SO_4^{-2}$) of the seawater. Both pH static test with seawater and distilled water, it is not in the case of the mercury. Most of mercury leached from steel making slag was precipitated(SI=0). Because the decreasing of $Hg^{+2}$ concentrations depends ferociously on the variation of chloride($Cl^-$) existed in the seawater. $Hg^{+2}$ leached from steel making slag could be sorbed strongly with chloride($Cl^-$) compared of carbonate($CO_3^{-2}$) and sulfate($SO_4^{-2}$) in the seawater. On the basis of that result, we found that the species of mercury was formed of calomel($Hg_2Cl_2$) as one of finite solid. Due to forming a calomel($Hg_2Cl_2$) in the seawater, the stability of mercury species by steel making slag should be higher than those of lead, copper, and cadmium species. Regarding the results stated above, we postulated that the steel making slag could be recycled to sea aggregates due to being distinguishing leachability of heavy metals($Pb^{+2},\;Cu^{+2},\;Cd^{+2},\;and\;Hg^{+2}$) between leaching tests by distilled water and seawater.

Weatherproof-properties Evaluation of Castor Oil-impregnated Wood Using a Vacuum-pressure Method (감가압법으로 주입한 피마자유-처리 목재의 내후성 평가)

  • Ohkyung Kwon;Yeong Seo Choi;Daye Kim;Wonsil Choi;Young-kyu Lee;Kwon-min Kim;Joon weon, Choi;In Yang
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.302-311
    • /
    • 2023
  • This study was conducted to evaluate the applicability of castor oil (CSO) as a natural wood preservative. CSO was treated into wood blocks prepared with domestic and imported wood species using a vacuum-pressure method, and then treatability, leachability and decay resistance of the CSO-treated wood blocks were examined. Although CSO was penetrated effectively into wood blocks of all wood species, the CSO-treatability was the highest in Western hemlock, followed by Japanese larch (LA), soft maple and Mongolian oak due to the difference of its anatomical structure. Except for LA, the more retained, the more leached during a saline water-immersing process for 48h. The use of ethanol added to reduce the viscosity of CSO affected negatively the treatability and leachability of wood blocks. Decay resistance, which was evaluated by the weight loss of wood blocks exposed against Fomitopsis palustris (FOP) and Trametes versicolor, of the CSO-treated/leached wood blocks was superior to that of control. Especially, most of wood blocks treated with preserving solution composed of only CSO (CSO-2) did not decayed and showed a very low weight loss against FOP. The decay resistance results from CSO retained in wood blocks after leaching. The retention of CSO could identify using the observation of X-ray microscope. Length of wood strips, which were treated with CSO-2 and then immersed in saline water for 2 weeks, hardly changed in all cutting directions. In addition, weight gain and length-swelling rate of the wood strips were extremely low compared to those of control. These results indicate that moisture resistance of the wood strips was improved by the CSO treatment. It is concluded that the treatment of CSO using a vacuum-pressure method provides the decay resistance and dimensional stability of wood, and thus CSO can be used as a natural wood preservative on various indoor and outdoor circumstances.

Leaching Characteristics and Potential Impact Assessment of Pollutants from Field Test Cells with Coal Bottom Ash as Fill Materials for Recycling (석탄 바닥재 메움재 재활용을 위한 Field Test Cells로부터 오염물질 배출 특성 및 잠재적 영향 평가)

  • Jang, Yong-Chul;Lee, Sungwoo;Kang, Heeseok;Lee, Seunghun
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.2
    • /
    • pp.135-145
    • /
    • 2013
  • The recycling of coal bottom ash generated from coal power plants in Korea has been limited due to heterogenous characteristics of the materials. The most common management option for the ash is disposal in landfills (i.e. ash pond) near ocean. The presence of large coarse and fine materials in the ash has prompted the desire to beneficially use it in an application such as fill materials. Prior to reuse application as fill materials, the potential risks to the environment must be assessed with regard to the impacts. In this study, a total of nine test cells with bottom ash samples collected from pretreated bottom ash piles and coal ash pond in a coal-fired power plant were constructed and operated under the field conditions to evaluate the leachability over a period of 210 days. Leachate samples from the test cells were analyzed for a number of chemical parameters (e.g., pH, salinity, electrical conductance, anions, and metals). The concentrations of chemicals detected in the leachate were compared to appropriate standards (drinking water standard) with dilution attenuation factor, if possible, to assess potential leaching risks to the surrounding area. Based on the leachate analysis, most of the samples showed slightly high pH values for the coal ash contained test cells, and contained several ions such as sodium, potassium, calcium, magnesium, chloride, sulfate, and nitrate in relatively large quantities. Three elements (aluminum, boron, and barium) were commonly detected above their respective detection limits in a number of leachate samples, especially in the early leaching period of time. The results of the test cell study indicate that the pollutants in the leachate from the coal ash test cells were not of a major concern in terms of leaching risk to surface water and groundwater under field conditions as fill materials. However, care must be taken in extending these results to actual applications because the results presented in this study are based on the limited field test settings and time frame. Structural characteristics and analysis for coal bottom ash may be warranted to apply the materials to actual field conditions.

Solidification/Stabilization of Arsenic Contaminated Soil Using Cement-Based Synthesized Materials (시멘트계 합성물질을 이용한 비소 오염 토양의 고형화/안정화)

  • Kim, Ran;YHong, Seong Hyeok;Jung, Bahng Mi;Chae, Hee Hun;Park, Joo Yang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.2
    • /
    • pp.59-65
    • /
    • 2012
  • Solidification/Stabilization(S/S) is one of the remediation technologies that have been applied for treating inorganic hazardous wastes. This study investigated the reduction of arsenic concentration of arsenic-contaminated soil using by S/S. The binder plays a role in controlling the mobility and solubility of the contaminants in S/S process, so it is important to determine the optimum binder content. Therefore, this study evaluated the effectiveness of S/S using four different binders(cement, zero valent iron, and monosulfate and ettringite(cement-based synthesized materials) at the binder content ranged between 5%(wt.) and 20%(wt.). The leachability of arsenic in 1 N HCl was different depending on the types of binders: cement(71.41%) > monosulfate(47.45%) > ettringite(46.36%) > ZVI(33.08%) at the binder content of 20%. Additionally, three kinds of a mixture binder were prepared using cement and additives(monosulfate, ettringite, calcium sulfoaluminate(CSA)) and tested for arsenic reduction. The highest arsenic removal capacity was found at the mass ratio of cement to the additive, 4:1 in all experiments using a mixture binder, regardless of the additives types. A mixture binder(cement and additives) resulted in higher arsenic removal relative to the arsenic removal when cement was used alone.

A Geochemical Study on the Enrichment of Trace Elements in the Saline Ash Pond of a Bituminous-burning Power Plant in Korea (국내 모 유연탄 발전소의 석탄회 매립 염호수 내 미량원소 농집에 대한 지구화학적 연구)

  • Kim, Seok-Hwi;Choi, Seung-Hyun;Jeong, Gi Young;Lee, Jae-Cheol;Kim, Kangjoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.31-40
    • /
    • 2014
  • In present study, we geochemically investigated the fresh coal ashes and the saline ash pond of an electric power plant in Korea, which burns imported bituminous coals. The goals are to see the chemical changes of the ash pond by reaction with coal ashes and to investigate the relative leachability of elements from the ashes by reaction with saline waters. For this study, one fresh fly ash, one fresh bottom ash, and 7 water samples were collected. All the ash samples and 2 water samples were analyzed for 55 elements. The results indicated that the fly ashes are enriched with chalcophilic elements such as Cu, Zn, Ga, Ge, Se, Cd, Sb, Au, Pb, and B relative to other elements. On the other hand, concentrations of As, Ba, Co, Ga, Li, Mn, Mo, Sb, U, V, W, and Zr are much higher in the ash pond than those dissolved in the seawater. Ag, Bi, Li, Mo, Rb, Sb, Sc, Se, Sn, Sr, and W show high ratios of elemental concentrations in pond water to those in the fly ash. Our results imply that the leaching of trace elements is regulated by geochemical controls such as solubility and adsorption even though the trace elements are relatively enriched on the ash surfaces after the coal combustion due to their volatilities.