• 제목/요약/키워드: Lazy Classifier

검색결과 1건 처리시간 0.015초

퍼지 k-Nearest Neighbors 와 Reconstruction Error 기반 Lazy Classifier 설계 (Design of Lazy Classifier based on Fuzzy k-Nearest Neighbors and Reconstruction Error)

  • 노석범;안태천
    • 한국지능시스템학회논문지
    • /
    • 제20권1호
    • /
    • pp.101-108
    • /
    • 2010
  • 본 논문에서는 퍼지 k-NN과 reconstruction error에 기반을 둔 feature selection을 이용한 lazy 분류기 설계를 제안하였다. Reconstruction error는 locally linear reconstruction의 평가 지수이다. 새로운 입력이 주어지면, 퍼지 k-NN은 local 분류기가 유효한 로컬 영역을 정의하고, 로컬 영역 안에 포함된 데이터 패턴에 하중 값을 할당한다. 로컬 영역과 하중 값을 정의한 우에, feature space의 차원을 감소시키기 위하여 feature selection이 수행된다. Reconstruction error 관점에서 우수한 성능을 가진 여러 개의 feature들이 선택 되어 지면, 다항식의 일종인 분류기가 하중 최소자승법에 의해 결정된다. 실험 결과는 기존의 분류기인 standard neural networks, support vector machine, linear discriminant analysis, and C4.5 trees와 비교 결과를 보인다.