• Title/Summary/Keyword: Layout optimization

Search Result 280, Processing Time 0.027 seconds

THE OPTIMAL DESIGN OF CONNECTORS IN ALL CERAMIC FIXED PARTIAL DENTURES MANUFACTURED FROM ALUMINA TAPE (최적설계기법을 이용한 완전도재 가공의치의 연결부 형태 보강)

  • Oh Nam-Sik;Kim Han-Sung;Lee Myung-Hyun;Lee Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.2
    • /
    • pp.125-132
    • /
    • 2004
  • Statements of problem: All ceramic fixed partial denture cores can be made by the slip casting method and the advanced alumina tape method. The fracture resistance of these core connector areas is relatively low. Purpose: The purpose of this study is to standardize the appropriate volumetric figure and location of the connectors in the alumina core fabricated in alumina tape to be used in fixed partial dentures by way of topology optimization. Material and method: A maxillary anterior three-unit bridge alumina core with teeth form and surrounding periodontal apparatus model was used to ultimately design the most structurally rigid form of the connector. Loadings from a $0^{\circ}$, $45^{\circ}$ and $60^{\circ}$ to the axis of each tooth were applied and analyzed with the 3-D finite element analysis method. Using the results from these experiments, the topology optimization was applied and the optimal reinforcement layout of connector was obtained and the detail shape in the fixed partial denture core was designed. Results: The modified prosthesis with the form of a bulk in the lower lingual surface of the connector in the event, reduced the stress concentration up to 20% in the 3-D FEA. Conclusion: The formation of a bulk in the lower lingual connector area of an alumina core for a fixed partial denture decreases the stress to a clinically favorable measure but does not harm the esthetic point of view. This result illustrates the possibility of clinical application of the modified form designed by the topology optimization method.

New Weight-reduction Design of the Fifth Wheel Coupler with a Trailer by Using Topology Optimization and Durability Tests (위상최적설계를 통한 트레일러 제5차륜 연결구조물의 경량화 및 내구성)

  • Kim, Cheol;Lee, Seung-Yoon;Lee, Yong-Choon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.137-143
    • /
    • 2016
  • The fifth wheel coupler is a heavy automotive coupling structure which connects a tractor and a trailer used for heavy-duty trucks widely. It is subjected to various loads simultaneously such as rolling, pitching and yawing loads as well as coupling frictional and impact loadings. Most of existing couplers have been overdesigned and, therefore, it is necessary to reduce the dead weight to increase the fuel efficiency. The topology optimization was applied in order to find conceptual layout designs which could show major load paths and ribs locations, and then the size structural optimization was performed in order to determine the heights and thicknesses of coupler ribs with the predetermined various loading conditions for the development of a new slim coupler with a minimum weight and high enough strength and stiffness. As the results of the topology optimum design, an efficient new coupling structure for truck trailers was designed. The weight of the new fifth wheel coupler was reduced by 4.9 %, compared with the existing one, even though all strength requirements were satisfied. The fatigue test of the new coupler was performed with cyclic vertical loads (+78.4 to +235.2 kN) and horizontal loads (-91.2 to +91.2 kN) simultaneously at 1 Hz and the life of 2,000,000 cycles were achieved without failure.

The Integrated Design and Analysis of Manufacturing Lines (I) - an Automated Modeling & Simulation System for Digital Virtual Manufacturing (제조라인 통합 설계 및 분석(I) - 디지털 가상생산 기술 적용을 위한 모델링 & 시뮬레이션 자동화 시스템)

  • Choi, SangSu;Hyeon, Jeongho;Jang, Yong;Lee, Bumgee;Park, Yangho;Kang, HyoungSeok;Jun, Chanmo;Jung, Jinwoo;Noh, Sang Do
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.2
    • /
    • pp.138-147
    • /
    • 2014
  • In manufacturing companies, different types of production have been developed based on diverse production strategies and differentiated technologies. The production systems have become smart, factories are filled with unmanned manufacturing lines, and sustainable manufacturing technologies are under development. Nowadays, the digital manufacturing technology is being adopted and used in manufacturing industries. When this technology is applied, a lot of efforts, time and cost are required and training professionals in-house is limited. In this paper, we introduce e-FEED system (electronic based Front End Engineering and Design) that is the integrated design and analysis system for optimized manufacturing line development on virtual environment. This system provides the functions that can be designed easily using library and template based on standardized modules and analyzed automatically the logistic and capacity simulation by one-click and verified the result using visual reports. Also, we can review the factory layout using automatically created 3D virtual factory and increase the knowledge reuse by e-FEED system.

Performance comparison of shear walls with openings designed using elastic stress and genetic evolutionary structural optimization methods

  • Zhang, Hu Z.;Liu, Xia;Yi, Wei J.;Deng, Yao H.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.303-314
    • /
    • 2018
  • Shear walls are a typical member under a complex stress state and have complicated mechanical properties and failure modes. The separated-elements model Genetic Evolutionary Structural Optimization (GESO), which is a combination of an elastic-plastic stress method and an optimization method, has been introduced in the literature for designing such members. Although the separated-elements model GESO method is well recognized due to its stability, feasibility, and economy, its adequacy has not been experimentally verified. This paper seeks to validate the adequacy of the separated-elements model GESO method against experimental data and demonstrate its feasibility and advantages over the traditional elastic stress method. Two types of reinforced concrete shear wall specimens, which had the location of an opening in the middle bottom and the center region, respectively, were utilized for this study. For each type, two specimens were designed using the separated-elements model GESO method and elastic stress method, respectively. All specimens were subjected to a constant vertical load and an incremental lateral load until failure. Test results indicated that the ultimate bearing capacity, failure modes, and main crack types of the shear walls designed using the two methods were similar, but the ductility indexes including the stiffness degradation, deformability, reinforcement yielding, and crack development of the specimens designed using the separated-elements model GESO method were superior to those using the elastic stress method. Additionally, the shear walls designed using the separated-elements model GESO method, had a reinforcement layout which could closely resist the actual critical stress, and thus a reduced amount of steel bars were required for such shear walls.

Optimum Design of a Cooling Air Cooler Heat Exchanger by Using a Response Surface Method (반응표면법을 이용한 Cooling Air Cooler 열교환기의 최적 설계)

  • Kim, Seong-Soo;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.85-92
    • /
    • 2017
  • Global air traffic is forecast to grow at an average annual rate of around 5% in the next 20 years. The continuous growth of air traffic and raised environmental awareness put increasing pressure on aero engine manufacturers to reduce fuel burn and emissions. NEWAC are a new integrated program of the European Union with focus on innovative core engine concepts to achieve this problem. In this paper, Within NEWAC, active core engine configurations will be investigated. the investigation is focused on the optimal design of the CAC heat exchanger for active core. For optimal design of he CAC heat exchanger, the HTFS of basic design of heat exchanger are analyzed so as to proceed an optimization routines based on Response Surface Method(RSM) and Design of Experiment(DOE). As a result, CAC heat exchanger optimized by 1.0314 lb/s mass flow rate and 3.9058 mm TP of tube layout and 206.8181 mm height of heat exchanger and 918 tube number for heat transfer and pressure drop. We confirm the design optimization using RSM and DOE is useful on complex structure of heat exchanger.

Design of Heat-Activated Reversible Integral Attachments for Product-Embedded Disassembly

  • Li, Ying;Kikuchi, Noboru;Saitou, Kazuhiro
    • International Journal of CAD/CAM
    • /
    • v.3 no.1_2
    • /
    • pp.19-29
    • /
    • 2003
  • Disassembly is a fundamental process needed for component reuse and material recycling in all assembled products. Integral attachments, also known as 'snap' fits, are favored fastening means in design for assembly (DFA) methodologies, but not necessarily a favored choice for design for disassembly. In this paper, design methods of a new class of integral attachments are proposed, where the snapped joints can be disengaged by the application of localized heat sources. The design problem of reversible integral attachments is posed as the design of compliant mechanisms actuated with localized thermal expansion of materials. Topology optimization technique is utilized to obtain conceptual layout of snap-fit mechanisms that realizes a desired deformation of snapped features for joint release. Two design approaches are attempted and design results of each approach are presented, where the geometrical configuration extracted from optimal topologies are simplified to enhance the manufacturability for the conventional injection molding technologies. To maximize the magnitude of deformation, a design scheme has been proposed to include boundary conditions as design variables. Final designs are verified using commercial software for finite element analysis.

Automation in Site Planning of Apartment Complex - Through Rhino Grasshopper's Parametric Modeling and Optimization - (아파트 최적 배치 자동화 - Rhino Grasshopper를 활용한 parametric model의 최적화를 중심으로 -)

  • Sung, Woo-Jae;Jeong, Yo-Han
    • Journal of KIBIM
    • /
    • v.10 no.3
    • /
    • pp.22-32
    • /
    • 2020
  • Apartment building site planning is one of time consuming and labor-intensive tasks in architectural design field, due to its complexity in zoning regulations, building codes, local restrictions, and site-specific conditions. In other words, the process can be seen as a very complicated mathematical function with layers of variables and parameters, which ironically can be automated using computational methods on parametric tools. In this paper, a practical method of automating site planning of an apartment complex has been proposed by utilizing parametric approaches in Rhino 3D and Grasshopper. Two primary parameters, building heights and positions, determine the efficacy of building layouts under all regulatory standards, thus testing out numerous combinations of the two will produce some successful layout alternatives. For this, equation solver has been used for iterating the parametric model to sort out meaningful results among others. It also has been proven that the proposed process significantly reduced the time in site planning down to less than an hour on most cases, and many successful alternatives could be obtained by using multiple computers. Post evaluation processes such as day light and view shed analysis helped sort out the best performing ones out of functioning alternatives.

A Study on the Optimization of the Size of the Corrugated Fiberboard Cartons for Export of Agricultural Products (신선 농산물 수출을 위한 골판지 상자 크기의 최적화 연구)

  • Minhwi Kim;Youn Suk Lee;Myungho Lee;Euihark Lee
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.30 no.2
    • /
    • pp.121-129
    • /
    • 2024
  • This study aimed to focus on the optimization of the external dimension sizes in the corrugated fiberboard cartons (CFCs) for exporting agricultural products. The commercial CFCs of current fresh produces such as paprika, Asian pear, melon, sweet potato, and oriental melon for export were used for this study. The guidelines of the minimum internal dimensions of the refrigerated reefer container, the dimensions of pallets, and the maximum load height of a stack were referred to KS T ISO 668, KS T 1372, and the Container Handbook by the German Insurance Association, respectively. These principles were selected as a ground rule for the external dimensions of CFCs. Package layout design programs of ArtiosCAD and Cape Pack software were used to confirm the box stacking patterns and revise the external dimension of CFCs. The final external dimensions of each CFC were revised from 5 to 30 mm compared to its original dimensions. The maximum load of each stacking box per pallet has been increased from 0.0 to 12.5% compared to its original load.

Improvement of Address Pointer Assignment in DSP Code Generation (DSP용 코드 생성에서 주소 포인터 할당 성능 향상 기법)

  • Lee, Hee-Jin;Lee, Jong-Yeol
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.1
    • /
    • pp.37-47
    • /
    • 2008
  • Exploitation of address generation units which are typically provided in DSPs plays an important role in DSP code generation since that perform fast address computation in parallel to the central data path. Offset assignment is optimization of memory layout for program variables by taking advantage of the capabilities of address generation units, consists of memory layout generation and address pointer assignment steps. In this paper, we propose an effective address pointer assignment method to minimize the number of address calculation instructions in DSP code generation. The proposed approach reduces the time complexity of a conventional address pointer assignment algorithm with fixed memory layouts by using minimum cost-nodes breaking. In order to contract memory size and processing time, we employ a powerful pruning technique. Moreover our proposed approach improves the initial solution iteratively by changing the memory layout for each iteration because the memory layout affects the result of the address pointer assignment algorithm. We applied the proposed approach to about 3,000 sequences of the OffsetStone benchmarks to demonstrate the effectiveness of the our approach. Experimental results with benchmarks show an average improvement of 25.9% in the address codes over previous works.

Intelligent 3D packing using a grouping algorithm for automotive container engineering

  • Joung, Youn-Kyoung;Noh, Sang Do
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.140-151
    • /
    • 2014
  • Storing, and the loading and unloading of materials at production sites in the manufacturing sector for mass production is a critical problem that affects various aspects: the layout of the factory, line-side space, logistics, workers' work paths and ease of work, automatic procurement of components, and transfer and supply. Traditionally, the nesting problem has been an issue to improve the efficiency of raw materials; further, research into mainly 2D optimization has progressed. Also, recently, research into the expanded usage of 3D models to implement packing optimization has been actively carried out. Nevertheless, packing algorithms using 3D models are not widely used in practice, due to the large decrease in efficiency, owing to the complexity and excessive computational time. In this paper, the problem of efficiently loading and unloading freeform 3D objects into a given container has been solved, by considering the 3D form, ease of loading and unloading, and packing density. For this reason, a Group Packing Approach for workers has been developed, by using analyzed truck packing work patterns and Group Technology, which is to enhance the efficiency of storage in the manufacturing sector. Also, an algorithm for 3D packing has been developed, and implemented in a commercial 3D CAD modeling system. The 3D packing method consists of a grouping algorithm, a sequencing algorithm, an orientating algorithm, and a loading algorithm. These algorithms concern the respective aspects: the packing order, orientation decisions of parts, collision checking among parts and processing, position decisions of parts, efficiency verification, and loading and unloading simulation. Storage optimization and examination of the ease of loading and unloading are possible, and various kinds of engineering analysis, such as work performance analysis, are facilitated through the intelligent 3D packing method developed in this paper, by using the results of the 3D model.