• Title/Summary/Keyword: Layered heat sink

Search Result 6, Processing Time 0.025 seconds

An Experimental Study on the Thermal Resistance Characteristics for Various Types of Heat Sinks (다양한 형상의 Heat Sink 열저항 특성에 관한 실험적 연구)

  • 김종하;윤재호;이창식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.8
    • /
    • pp.676-682
    • /
    • 2002
  • This paper has been made to investigate the thermal performance characteristics for the several types of heat sinks such as extruded heat sink, aluminum foam heat sink, layered heat sink. The various types heat sinks are prepared and tested for natural convection as well as forced convection. The experimental results for natural convection are compared to those for three types of heat sink so that the appropriate heat sink can be designed or chosen according to the heating conditions. The overall heat transfer performances for layered heat sink, extruded heat sink and aluminum foam heat sink are almost comparable to those under natural convection and forced convection. The forced convection of layered heat sink become 1.2 times as high as those of extruded heat sink, and the forced convection of extruded heat sink become 1.2 times as high as those of aluminum foam heat sink. This study shows that bar height, bar distance and number of bar for layered heat sink are important parameters, which have a serious influence on thermal performance for layered heat sinks.

An Experimental Study on the Thermal Resistance Characteristics of Layered Heat Sink (적층형 Heat Sink의 열저항 특성에 관한 실험적 연구)

  • 김종하;윤재호;권오경;이창식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.4
    • /
    • pp.271-287
    • /
    • 2001
  • This paper has been made to investigate the thermal performance characteristics for the several types of layered aluminum heat sinks with offset-strip fin. Heat sinks with different fin height, fin length, number of fin layer and slanted fin are prepared and tested for natural convection as well as forced convection. The experimental results for layered heat sink(LHS) are compared to those for advanced pin fin heat sink (PHS) so that the appropriate heat sink can be designed or chosen according to the heating conditions. The overall heat transfer performances for LHS are almost comparable to those of PHS under natural convection, and become 1.2∼1.5 times as high as those of PHS under forced convection situation. This study shows that fin height and number of fin layer re important parameters, which have a serious influence on thermal performance for layered heat sinks.

  • PDF

A Study on the Heat Dissipation Characteristics of Layered Heat Sink for CPU Cooling (CPU 냉각을 위한 적층형 히트싱크의 방열 특성 연구)

  • Lee, Kyu-Chill;Kim, Joung-Ha;Yun, Jae-Ho;Park, Sang-Il;Choi, Yun-Ho;Kwon, Oh-Kyung
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.182-187
    • /
    • 2006
  • This research presented the heat resistance characteristics of heat sink which is newly designed through the experiment. For the same volume and base plate of heat sinks, the experiment of heat transfer characteristics was conducted for forced convection of layered type heat sink. The heat transfer and pressure drop characteristics of the layered type heat sink were compared for the various kinds of fin pitches, fin heights and heights of heat sink. The results show that thermal resistance is decreased as the height of heat sink increases and the fin height and fin pitch decrease, From the experimental data of layered type heat sink, the correlation equation of Nusselt number was obtained as follows ; $$Nu=0.845{\cdot}Re^{0.393}{\cdot}(\frac{f_h}{D_h})^{0.160}{\cdot}(\frac{f_p}{D_h})^{0.372}{\cdot}(\frac{H_{hs}}{D_h})^{-0.942}$$

  • PDF

A Design of Heat-Sink and DMX512 Communication Control for High-Power LEDs (고출력 LED 방열 및 DMX512 통신 제어 설계)

  • Kim, Ki-Yun;Ham, Kwang-Keun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.8
    • /
    • pp.725-732
    • /
    • 2013
  • Recently, various applications for LED lightings are growing continuously due to their better performances such as low power consumption, longer life time, operation speed, controllability, high quality color rendering, and sustainability. However, in developing the high-powered LEDs illumination system, heat-sink problem is one of the important obstacle. In this paper, a heat-sink design with multi-layered structure for high-powered LEDs is proposed, which is composed of metal core PCB, heat-pipes, heat-sink plates, and fans. And also, in this paper, a design for LED controls using DMX512 protocols through RS-485 communications is proposed, which is considered as de facto international standard in LEDs illumination control and is widely used in landscape lighting and stage lighting. In this paper, LED control and its application techniques are introduced and the method of wireless remote control for main controller is proposed.

Thermal Properties of Two-Layered Materials Composed of Dielectric Layer on Metallic Substrate along the Thickness Direction (금속기판에 유전체 후막을 형성시켜 제조한 2층 층상재료에서 두께 방향의 열전도 특성)

  • Kim, Jong-Gu;Jeong, Ju-Young;Ju, Jae-Hoon;Park, Sang-Hee;Cho, Young-Rae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.87-92
    • /
    • 2016
  • The importance of heat dissipation for the electric device modules along the thickness direction is increasing. Two types of two-layered materials, metal-metal bonding and dielectric-metal bonding, have been fabricated by roll bonding process and a thermal diffusivity of the specimens was measured along the thickness direction. The thermal diffusivity of specimens with metal-metal bonding measured by light flash analysis (LFA) showed a same value independent on the direction of heat flow. However, the thermal diffusivity of specimens with dielectric-metal bonding showed a big difference of 17.5% when the direction of heat flow changed oppositely in the LFA process. The measured thermal diffusivity of specimens when the heat flows from metal to dielectric direction showed smaller value of 17.5% compared to the value when the heat flow from dielectric to metal direction. The difference in thermal diffusivity of specimens with dielectric-metal bonding dependence on direction of heat flow is due to the electron-phonon resistance that occurred transfer process of electron energy to phonon energy near the interface.