• Title/Summary/Keyword: Layer-by-layer self-assembly

Search Result 77, Processing Time 0.035 seconds

All-Organic Nanowire Field-Effect Transistors and Complementary Inverters Fabricated by Direct Printing

  • Park, Gyeong-Seon;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.632-632
    • /
    • 2013
  • We generated single-crystal organic nanowire arrays using a direct printing method (liquidbridge- mediated nanotransfer molding) that enables the simultaneous synthesis, alignment and patterning of nanowires from molecular ink solutions. Using this method, single-crystal organic nanowires can easily be synthesized by self-assembly and crystallization of organic molecules within the nanoscale channels of molds, and these nanowires can then be directly transferred to specific positions on substrates to generate nanowire arrays by a direct printing process. The position of the nanowires on complex structures is easy to adjust, because the mold is movable on the substrates before the polar liquid layer, which acts as an adhesive lubricant, is dried. Repeated application of the direct printing process can be used to produce organic nanowire-integrated electronics with twoor three-dimensional complex structures on large-area flexible substrates. This efficient manufacturing method is used to fabricate all-organic nanowire field-effect transistors that are integrated into device arrays and inverters on flexible plastic substrates.

  • PDF

Synthesis of Ultrathin Polymer Films by Self Assembly (자기 집합에 의한 고분자 초박막의 합성)

  • Shin, Jae Sup
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1142-1146
    • /
    • 1996
  • Cholesterol-containing surfactant was synthesized, and it was sonicated with monomer in water to form a vesicle solution. This vesicle solution was dried to construct a membrane which had a molecular multilayer structure. Using UV irradiation the monomer in this membrane were polymerized, and then surfactant was extracted by organic solvent. Using a X-ray diffractometer, the thickness of one layer and the regularity of the multilayer were measured. And scanning electron microscopy was conducted for fractured polymer film.

  • PDF

Selective Growth of Nanosphere Assisted Vertical Zinc Oxide Nanowires with Hydrothermal Method

  • Lee, Jin-Su;Nam, Sang-Hun;Yu, Jung-Hun;Yun, Sang-Ho;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.252.2-252.2
    • /
    • 2013
  • ZnO nanostructures have a lot of interest for decades due to its varied applications such as light-emitting devices, power generators, solar cells, and sensing devices etc. To get the high performance of these devices, the factors of nanostructure geometry, spacing, and alignment are important. So, Patterning of vertically- aligned ZnO nanowires are currently attractive. However, many of ZnO nanowire or nanorod fabrication methods are needs high temperature, such vapor phase transport process, metal-organic chemical vapor deposition (MOCVD), metal-organic vapor phase epitaxy, thermal evaporation, pulse laser deposition and thermal chemical vapor deposition. While hydrothermal process has great advantages-low temperature (less than $100^{\circ}C$), simple steps, short time consuming, without catalyst, and relatively ease to control than as mentioned various methods. In this work, we investigate the dependence of ZnO nanowire alignment and morphology on si substrate using of nanosphere template with various precursor concentration and components via hydrothermal process. The brief experimental scheme is as follow. First synthesized ZnO seed solution was spun coated on to cleaned Si substrate, and then annealed $350^{\circ}C$ for 1h in the furnace. Second, 200nm sized close-packed nanospheres were formed on the seed layer-coated substrate by using of gas-liquid-solid interfacial self-assembly method and drying in vaccum desicator for about a day to enhance the adhesion between seed layer and nanospheres. After that, zinc oxide nanowires were synthesized using a low temperature hydrothermal method based on alkali solution. The specimens were immersed upside down in the autoclave bath to prevent some precipitates which formed and covered on the surface. The hydrothermal conditions such as growth temperature, growth time, solution concentration, and additives are variously performed to optimize the morphologies of nanowire. To characterize the crystal structure of seed layer and nanowires, morphology, and optical properties, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and photoluminescence (PL) studies were investigated.

  • PDF

Nano-Scale Patterning by Gold Self-Assembly on PS-PB-PS Triblock Copolymer Thin Film Templates (PS-PB-PS 삼블럭 공중합체 박막형판에서의 금의 자기응집에 의한 Nano-Scale 패턴형성)

  • Kim, G.;Libera, M.
    • Elastomers and Composites
    • /
    • v.34 no.1
    • /
    • pp.45-52
    • /
    • 1999
  • This paper describes how the gold particles self assemble on the specific phase on the microphase separated block copolymer thin film and form a well ordered patterns. For this study, polystyrene-polybutadiene-polystyrene (PS-PB-PS) triblock copolymer (30wt % PS) thin films (${\sim}100nm$) having a cylindrical morphology were cast from 0.1wt% toluene solution to be used as polymer thin film templates. The films having either vertical PS cylinders or in-plane PS cylinders in PB matrix from each different solvent evaporation condition were obtained. Cross-sectional transmission electron microscopy(TEM) was used to study the surface and bulk morphologies of block copolymer thin films. Small amount of gold particles was evaporated on a block copolymer thin film template to obtain a nano-scale pattern. When an as-cast thin film template was used, gold particles preferentially self assemble on the low surface tension PB phase and a relatively well ordered pattern in nano-scale was produced. However, after the formation of a low surface energy PB rich layer upon annealing, a gold self-assembled pattern was not observed.

  • PDF

Label-free Femtomolar Detection of Cancer Biomarker by Reduced Graphene Oxide Field-effect Transistor

  • Kim, Duck-Jin;Sohn, Il-Yung;Jung, Jin-Heak;Yoon, Ok-Ja;Lee, N.E.;Park, Joon-Shik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.549-549
    • /
    • 2012
  • Early detection of cancer biomarkers in the blood is of vital importance for reducing the mortality and morbidity in a number of cancers. From this point of view, immunosensors based on nanowire (NW) and carbon nanotube (CNT) field-effect transistors (FETs) that allow the ultra-sensitive, highly specific, and label-free electrical detection of biomarkers received much attention. Nevertheless 1D nano-FET biosensors showed high performance, several challenges remain to be resolved for the uncomplicated, reproducible, low-cost and high-throughput nanofabrication. Recently, two-dimensional (2D) graphene and reduced GO (RGO) nanosheets or films find widespread applications such as clean energy storage and conversion devices, optical detector, field-effect transistors, electromechanical resonators, and chemical & biological sensors. In particular, the graphene- and RGO-FETs devices are very promising for sensing applications because of advantages including large detection area, low noise level in solution, ease of fabrication, and the high sensitivity to ions and biomolecules comparable to 1D nano-FETs. Even though a limited number of biosensor applications including chemical vapor deposition (CVD) grown graphene film for DNA detection, single-layer graphene for protein detection and single-layer graphene or solution-processed RGO film for cell monitoring have been reported, development of facile fabrication methods and full understanding of sensing mechanism are still lacking. Furthermore, there have been no reports on demonstration of ultrasensitive electrical detection of a cancer biomarker using the graphene- or RGO-FET. Here we describe scalable and facile fabrication of reduced graphene oxide FET (RGO-FET) with the capability of label-free, ultrasensitive electrical detection of a cancer biomarker, prostate specific antigen/${\alpha}$ 1-antichymotrypsin (PSA-ACT) complex, in which the ultrathin RGO channel was formed by a uniform self-assembly of two-dimensional RGO nanosheets, and also we will discuss about the immunosensing mechanism.

  • PDF

Synthesis and Characterization of Mn3O4-Graphene Nanocomposite thin Film by an ex situ Approach

  • Kang, Myunggoo;Kim, Jung Hun;Yang, Woochul;Jung, Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1067-1072
    • /
    • 2014
  • In this study, we report a new approach for $Mn_3O_4$-graphene nanocomposite by ex situ method. This nanocomposite shows two-dimensional aggregation of nanoparticle, and doping effect by decorated manganese oxide ($Mn_3O_4$), as well. The graphene film was made through micromechanical cleavage of graphite on the $SiO_2/Si$ wafer. Manganese oxide ($Mn_3O_4$) nanoparticle with uniform cubic shape and size (about $5.47{\pm}0.61$ nm sized) was synthesized through the thermal decomposition of manganese(II) acetate, in the presence of oleic acid and oleylamine. The nanocomposite was obtained by self-assembly of nanoparticles on graphene film, using hydrophobic interaction. After heat treatment, the decorated nanoparticles have island structure, with one-layer thickness by two-dimensional aggregations of particles, to minimize the surface potential of each particle. The doping effect of $Mn_3O_4$ nanoparticle was investigated with Raman spectra. Given the upshift in positions of G and 2D in raman peaks, we suggest that $Mn_3O_4$ nanoparticles induce p-doping of graphene film.

STM Study of 2-Mercaptoethanol Self-Assembled Monolayer on Au(111)

  • Hyeon, Mun Seop;Lee, Chung Gyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.2
    • /
    • pp.213-218
    • /
    • 2001
  • Presented are the STM images of self-assembled monolayer of 2-mercaptoethanol on Au(111). Striped structures of ($6{\times}3_{\frac{1}{2}}$), ($5{\times}3_{\frac{1}{2}}$), ($4{\times}3_{\frac{1}{2}}$) and compact-($5{\times}3_{\frac{1}{2}}$) were observed after annealing at $80^{\circ}C.$ Analysis of the ordered structures revealed that the basic fundamental units of the ordered structures were three crystallographically non-equivalent ($3_{\frac{1}{2}}{\times}3_{\frac{1}{2}}$) $R30^{\circ}$ assemblies, and that the way of combination of the assemblies produced the four different structures. The($6{\times}3_{\frac{1}{2}}$) structure ( $\theta$ = 0.33) was composed of one ($3_{\frac{1}{2}}{\times}3_{\frac{1}{2}}$)$R30^{\circ}$ assembly, while the ($5{\times}3_{\frac{1}{2}}$) ( $\theta$ = 0.30) and ($4{\times}3_{\frac{1}{2}}$) ( $\theta$ = 0.38) structures were consisted of two ($3_{\frac{1}{2}}{\times}3_{\frac{1}{2}}$) $R30^{\circ}$ assemblies, separated by 5a and 4a, respectively. Furthermore, the compact-(5X 3½) structure ( $\theta$ = 0.50) was obtained by overlapping three ($3_{\frac{1}{2}}{\times}3_{\frac{1}{2}}$) $R30^{\circ}$ assemblies. In spite of the diversity in the adsorption structures, all the adsorption sites of 2-mercaptoethanol were fundamentally identical. On the other hand, the unannealed primitive SAM of 2-mercaptoethanol was characterized by two observations: a short-range order keeping the adsorbed molecules at approximately $3_{\frac{1}{2}}$ a and the small domains of the striped structures supporting that the observed surface structures on the annealed surface were the extension of the primitive layer of 2-mercaptoethanol. Comparing these observations with the already published structures of ethanthiol, it was concluded that the interaction between the hydroxyl groups of 2-mercaptoethanol might play a significant role in the adsorption step of 2-mercaptoethanol on Au(111) to organize the adsorption structures different from those of ethanthiol.

Contact Print Lithography for Precise Transplantation of Three-dimensional Microstructures into a Microsystem (표면접촉 인쇄방식을 이용한 극미세 3차원 형상의 이식공정에 관한 연구)

  • Park, Sang-Hu;Jeong, Jun-Ho;Choi, Dae-Geun;Kim, Ki-Don;Altun, Ali Ozhan;Lee, Eung-Sug;Yang, Dong-Yol;Kong, Hong-Jin;Lee, Kwang-Sup
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.136-142
    • /
    • 2007
  • Precise fabrication of three-dimensional (3D) self-standing microstructures on thin glass plates via two-photon induced polymerization (TPP) has been an important issue for innovative 3D nanodevices and microdevices. However, there are still issues remaining to be solved, such as building 3D microstructures on opaque materials via TPP and being able to implant them as functional parts onto practical systems. To settle these issues simply and effectively, we propose a contact print lithography (CPL) method using an ultraviolet (UV)-curable polymer layer. We report some of the possibilities and potential of CPL by presenting our results for transplanting 3D microstructures onto large-area substrates and also our examination of some of the effects of the process parameters on successful transplantation.

Study on the Crystallization of NaF using Quartz Crystal Analyzer (수정진동자를 이용한 NaF의 결정화에 관한 연구)

  • Han, Sung-Woong;Son, Se-Young;Song, Seong-Hun;Kim, Jong-Min;Kim, Woo-Sik;Muramatsu, Hiroshi;Chang, Sang Mok
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.659-663
    • /
    • 2002
  • The crystallization of NaF driven by adding ethanol was monitored using quartz crystal analyzer (QCA). Adding ethanol to NaF solution reduced the solubility of NaF and consequently led to nucleation and growth of NaF crystals. To investigate the crystallization behavior of NaF, a gold electrode of QCA was modified by anchoring with 2-mercaptoethylamine hydrochloride based on a self-assembly method. Frequency of QCA varied with the amount of NaF adsorbed on the self-assembled layer of 2-mercaptoethylamine hydrochloride, and thereby the process of NaF crystallization could be analyzed indirectly by monitoring the frequency change of QCA. To change the extent of supersaruration of NaF, the amount of ethanol added to the solution was varied from 1 to 5 ml. Then, the effect of the extent of the supersaturation on the crystallization was examined by analyzing the frequency changes of QCA coated with 2-mercaptoethylamine hydrochloride. It was shown that the QCA technique could be well applied for the characterization and analysis of the crystallization behavior of NaF.

Liquid Crystal Alignment by Photoreactive 4-Hydroxyazobenzene Thin Film (광감응성 4-Hydroxyazobenzene 박막의 액정 배향)

  • Lee, Won-Ju;Kim, Whan-Ki;Song, Ki-Gook
    • Polymer(Korea)
    • /
    • v.29 no.3
    • /
    • pp.308-313
    • /
    • 2005
  • The effects of molecular environments on photoisomerization of an azobenzene group were investigated using In-situ UV/Vis spectroscopy and optical anisotropy measurement technique. The reversible and repeatable photoisomeritation reactions of azobenzene were observed by irradiating the film containing 4-hydroxyazobenzene and by measuring absorption intensities of the characteristic bands of trans and cis isomers simultaneously. When the self-assembled monolayer with azobenzene groups was used as an alignment layer for a liquid crystal cell, the homeotropic alignment was induced due to their compact packing structures of azobenfene groups along the vertical direction of the substrate. By irradiating UV light on this cell, the trans-azobenzene groups change to cis-isomers through the photoisonlerieation and then resulting in the planar alignment of liquid crystal molecules.