• 제목/요약/키워드: Layer-Averaged Model

검색결과 114건 처리시간 0.024초

열성층 해석 난류모델 평가 (EVALUATION OF TURBULENCE MODELS FOR ANALYSIS OF THERMAL STRATIFICATION)

  • 최석기;김세윤;김성오
    • 한국전산유체공학회지
    • /
    • 제10권4호통권31호
    • /
    • pp.12-17
    • /
    • 2005
  • A computational study of evaluation of current turbulence models is performed for a better prediction of thermal stratification in an upper plenum of a liquid metal reactor. The turbulence models tested in the present study are the two-layer model, the shear stress transport (SST) model, the v2-f model and the elliptic blending mode(EBM). The performances of the turbulence models are evaluated by applying them to the thermal stratification experiment conducted at JNC (Japan Nuclear Corporation). The algebraic flux model is used for treating the turbulent heat flux for the two-layer model and the SST model, and there exist little differences between the two turbulence models in predicting the temporal variation of temperature. The v2-f model and the elliptic blending model better predict the steep gradient of temperature at the interface of thermal stratification, and the v2-f model and elliptic blending model predict properly the oscillation of the ensemble-averaged temperature. In general the overall performance of the elliptic blending model is better than the v2-f model in the prediction of the amplitude and frequency of the temperature oscillation.

사각 전도체가 존재하는 수평 밀폐계 내부의 자연대류 현상에 대한 수치적 연구 (Numerical Simulation of Natural Convection in a Horizontal Enclosure with a Conducting Square Body)

  • 이재룡;하만영
    • 대한기계학회논문집B
    • /
    • 제29권2호
    • /
    • pp.189-196
    • /
    • 2005
  • The physical model considered here is a horizontal layer of fluid heated below and cold above with a conducting body placed at the center of the layer. The body has dimensionless thermal conductivities to the fluid of 0.1, 1 and 50. Two-dimensional solution for unsteady natural convection is obtained using an accurate and efficient Chebyshev spectral methodology for different Rayleigh numbers. Multi-domain technique is used to handle a square-shaped conducting body. The results for the case of a conducting body are also compared to those of adiabatic and neutral isothermal bodies. When the dimensionless thermal conductivity is 0.1, a pattern of fluid flow and isotherms and the corresponding time-averaged surface Nusselt number are almost the same as the case of an adiabatic body. When the dimensionless thermal conductivity is 50, a pattern of flow and isotherm and the corresponding surface and time-averaged Nusselt number are similar to those of neutral body. The results for the case of dimensionless thermal conductivity of unity are also compared to those of pure natural convection.

실지형을 지나는 대기유동에 대한 수치모델의 검증 (Validation of Numerical Model for the Wind Flow over Real Terrain)

  • 김현구;이정묵;노유정
    • 한국대기환경학회지
    • /
    • 제14권3호
    • /
    • pp.219-228
    • /
    • 1998
  • In the present investigation, a numerical model developed for the prediction of the wind flow over complex terrain is validated by comparing with the field experiments. For the solution of the Reynolds - Averaged Clavier- stokes equations which are the governing equations of the microscale atmospheric flow, the model is constructed based on the finite-volume formulation and the SIMPLEC pressure-correction algorithm for the hydrodynamic computation. The boundary- fitted coordinate system is employed for the detailed depiction of topography. The boundary conditions and the modified turbulence constants suitable for an atmospheric boundary- layer are applied together with the k- s turbulence model. The full- scale experiments of Cooper's Ridge, Kettles Hill and Askervein Hill are chosen as the validation cases . Comparisons of the mean flow field between the field measurements and the predicted results show good agreement. In the simulation of the wind flow over Askervein Hill , the numerical model predicts the three dimensional flow separation in the downslope of the hill including the blockage effect due to neighboring hills . Such a flow behavior has not been simulated by the theoretical predictions. Therefore, the present model may offer the most accurate prediction of flow behavior in the leeside of the hill among the existing theoretical and numerical predictions.

  • PDF

Spatio-temporal Distributions of the Wind Stress and the Thermocline in the East Sea of Korea

  • NA Jung-Yul;HAN Sang-Kyu
    • 한국수산과학회지
    • /
    • 제21권6호
    • /
    • pp.341-350
    • /
    • 1988
  • The wind stress distribution over the East Sea of Korea was obtained from the shipboard observations of the Fisheries Research and Development Agency along the serial observation lines. These monthly and annual mean wind stress distributions were put into the simplified interface model which describes the latitudinal variations of the upper-layer thickness as function of the curl of the wind stress. The observed variations of the surface, zonally averaged winds indeed caused the upper-layer flow convergent and divergent at the latitudes that produced a tone of thick upper-layer or a deep permanent thermocline and the shallower depth with divergence. Thus, the wind field contributes positively to maintain the almost time-independent distribution of the interface of 'saddle like' feature in north-south direction over the study area.

  • PDF

3차원 난류경계층 내에 존재하는 종방향 와동의 유동특성에 관한 수치적 연구 (A Numerical Simulation of Longitudinal Vortex in Turbulent Boundary Layers)

  • 양장식;이기백
    • 대한기계학회논문집B
    • /
    • 제24권6호
    • /
    • pp.802-813
    • /
    • 2000
  • This paper represents numerical computations of the interaction between the longitudinal vortex and a flat plate 3-D turbulent boundary layer. In the present study, the main interest is in the behavior of longitudinal vortices introduced in turbulent boundary layers. The flow field behind vortex generator is modeled by the information that is available from studies on the delta winglet. Also, the Reynolds-averaged Navier-Stoke equations for three-dimensional turbulent flows, together with a two-layer turbulence model to resolve the near-wall flow, is solved by the method of pseudo compressibility. The present results show that the boundary layer is thinned in the regions where the secondary flow is directed toward the wall and thickened where it is directed away from the wall, and have a good agreement with the experimental data.

Theoretical Study of Gamma-ray Pulsars

  • Song, Yuzhe;Cheng, Kwong Sang;Takata, Jumpei
    • Journal of Astronomy and Space Sciences
    • /
    • 제33권2호
    • /
    • pp.69-73
    • /
    • 2016
  • We use the non-stationary three dimensional two-layer outer gap model to explain gamma-ray emissions from a pulsar magnetosphere. We found out that for some pulsars like the Geminga pulsar, it was hard to explain emissions above a level of around 1 GeV. We then developed the model into a non-stationary model. In this model we assigned a power-law distribution to one or more of the spectral parameters proposed in the previous model and calculated the weighted phase-averaged spectrum. Though this model is suitable for some pulsars, it still cannot explain the high energy emission of the Geminga pulsar. An Inverse-Compton Scattering component between the primary particles and the radio photons in the outer magnetosphere was introduced into the model, and this component produced a sufficient number of GeV photons in the spectrum of the Geminga pulsar.

환기가 있는 터널에서의 화재유동 해석의 정확성에 대한 고찰 (THE EXAMINATION OF ACCURACY OF FIRE-DRIVEN FLOW SIMULATION IN TUNNEL EQUIPPED WITH VENTILATION)

  • 장용준;이창현;김학범;정우성
    • 한국전산유체공학회지
    • /
    • 제14권3호
    • /
    • pp.115-122
    • /
    • 2009
  • Numerical methods are applied to simulate the smoke behavior in a ventilated tunnel using large eddy simulation (LES) which is incorporated in FDS (Fire Dynamics Simulator) with proper combustion and radiation model. In this study, present numerical results are compared with data obtained from experiments on pool fires in a ventilated tunnel. The model tunnel is $182m(L){\times}5.4m(W){\times}2.4m(H)$. Two fire scenarios with different ventilation rates are considered with two different fire strengths. The present results are analyzed with those from LES without combustion and radiation model and from RANS ($\kappa-\epsilon$) model as well. Temperature distributions caused by fire in tunnel are compared with each other. It is found that thermal stratification and smoke back-layer can be predicted by FDS and the temperature predictions by FDS show better results than LES without combustion and radiation model. The FDS solver, however, failed to predict correct flow pattern when the high ventilation rate is considered in tunnel because of the defects in the tunnel-inlet turbulence and the near-wall turbulence.

3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구 (NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTIC OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATIO)

  • 문바울;김재수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.297-301
    • /
    • 2008
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. The flow field is observed to oscillate in the "shear layer mode" with low aspect ratio. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's $\kappa$-$\omega$ turbulence model. The flow field is observed to oscillate in the shear layer mode" with large aspect ratio. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formul. The aero-acoustic wave analyzed with CPD(Correlation of Pressure Distribution).

  • PDF

3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구 (NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTIC OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATIO)

  • 문바울;김재수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.297-301
    • /
    • 2008
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. The flow field is observed to oscillate in the "shear layer mode" with low aspect ratio. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's ${\kappa}-{\varepsilon}$ turbulence model. The flow field is observed to oscillate in the "shear layer mode" with large aspect ratio. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formul. The aero-acoustic wave analyzed with CPD(Correlation of Pressure Distribution).

  • PDF

3차원 난류경계층 내에 존재하는 종방향 와동의 유동장 및 열전달 특성에 관한 수치해석(I) - Common Flow Down에 관하여 - (Numerical Analysis on the Flow Field and Heat Transfer Characteristics of Longitudinal Vortices in Turbulent Boundary Layer - On the Common Flow Down -)

  • 양장식
    • 설비공학논문집
    • /
    • 제17권9호
    • /
    • pp.789-798
    • /
    • 2005
  • This paper is a numerical study concerning how the interactions between a pair of the vortices effect flow field and heat transfer. The flow field (common flow down) behind a vortex generator is modeled by the information that is available from studies on a half-delta winglet. Also, the energy equation and the Reynolds-averaged Wavier-Stokes equation for three-dimensional turbulent flows, together with a two-layer turbulence model to resolve the near-wall flow, are solved by the method of AF-ADI. The present results predict that the boundary layer is thinned in the regions where the secondary flow is directed toward the wall and thickened where it Is directed away from the wall. Although some discrepancies are observed near the center of the vortex core, the overall performance of the computational model is found to be satisfactory.