• 제목/요약/키워드: Layer thickness

검색결과 5,153건 처리시간 0.028초

AZO/Ag/AZO 다층박막의 Ag두께에 따른 특성 연구 (Influence of Ag thickness on properties of AZO/Ag/AZO Multi-layer Thin Films)

  • 연제호;김홍배
    • 반도체디스플레이기술학회지
    • /
    • 제16권2호
    • /
    • pp.27-31
    • /
    • 2017
  • AZO/Ag/AZO multi-layer films deposited on glass substrate by RF magnetron sputtering and thermal evaporator have a much better electrical properties than Al-doped ZnO thin films. The multi-layer structure consisted of three layers, AZO/Ag/AZO, the electrical and optical properties of AZO/Ag/AZO were changed mainly by thickness of Ag layers. The optimum thickness of Ag layers was determined to be $90{\AA}$ for high optical transmittance and good electrical conductivity. The Ag layers thickness $90{\AA}$ is an optical transmittance greater than 80% of visible light and the obtained multilayer thin film with the low resistivity of $8.05{\times}10-3{\Omega}cm$ and the low sheet resistance $5.331{\Omega}/sq$. Applying to TCO and Solar electrode will improve efficiency.

  • PDF

Optimum thickness of GaAs top layer in AlGaAs-based 850 nm VCSELs for 56 Gb/s PAM-4 applications

  • Yu, Shin-Wook;Kim, Sang-Bae
    • ETRI Journal
    • /
    • 제43권5호
    • /
    • pp.923-931
    • /
    • 2021
  • We studied the influence of GaAs top-layer thickness on the small-signal modulation response and 56 Gb/s four-level pulse-amplitude modulation eye quality of 850 nm vertical-cavity surface-emitting lasers (VCSELs). We considered the proportionality of the gain-saturation coefficient to the photon lifetime. The simulation results that employed the transfer-matrix method and laser rate equations led to the conclusion that the proportionality should be considered for proper explanation of the experimental results. From the obtained optical eyes, we could determine an optimum thickness of the GaAs top layer that rendered the best eye quality of VCSEL. We also compared two results: one result with a fixed gain-saturation coefficient and the other that considered the proportionality. The former result with the constant gain-saturation coefficient demonstrated a better eye quality and a wider optimum range of the GaAs top-layer thickness because the resultant higher damping reduced the relaxation oscillation.

Magnetic field distribution in steel objects with different properties of hardened layer

  • Byzov, A.V.;Ksenofontov, D.G.;Kostin, V.N.;Vasilenko, O.N.
    • Advances in Computational Design
    • /
    • 제7권1호
    • /
    • pp.57-68
    • /
    • 2022
  • A simulation study of the distribution of magnetic flux induced by a U-shaped electromagnet into a two-layer massive object with variations in the depth and properties of the surface layer has been carried out. It has been established that the hardened surface layer "pushes" the magnetic flux into the bulk of the magnetized object and the magnetic flux penetration depth monotonically increases with increasing thickness of the hardened layer. A change in the thickness and magnetic properties of the surface layer leads to a redistribution of magnetic fluxes passing between the poles of the electromagnet along with the layer and the bulk of the steel object. In this case, the change in the layer thickness significantly affects the magnitude of the tangential component of the field on the surface of the object in the interpolar space, and the change in the properties of the layer affects the magnitude of the magnetic flux in the magnetic "transducer-object" circuit. This difference in magnetic parameters can be used for selective testing of the surface hardening quality. It has been shown that the hardened layer pushes the magnetic flux into the depth of the magnetized object. The nominal depth of penetration of the flow monotonically increases with an increase in the thickness of the hardened layer.

일정한 응고속도를 갖는 2성분 응고에서 조성 대류의 특성 및 안정성 (Characteristics and Stability of Compositional Convection in Binary Solidification with a Constant Solidification Velocity)

  • 황인국
    • Korean Chemical Engineering Research
    • /
    • 제52권2호
    • /
    • pp.199-204
    • /
    • 2014
  • 2성분 응고계에서 다공성 mush 층에서의 조성 대류는 생성되는 제품의 질에 영향을 준다. 본 연구에서는 일정한 속도로 응고되는 mush 층을 고려하였다. 선형 안정성 이론을 사용하여 mush 층에 대한 교란방정식을 유도하였고, 기본상태 온도장과 mush 층에서 기공률의 분포를 수치해법으로 조사하였다. 과열량이 클 때 mush 층의 두께는 열경계층의 두께에 비해 상대적으로 작았다. 과열량이 감소함에 따라 mush 층의 두께를 기준으로 한 Rayleigh 수는 증가하였고, mush 층은 조성 대류에 대해 안정해졌다. mush 층의 윗면에 등온조건을 적용한 경우보다 온도 및 열속의 연속조건을 액체-mush 계면에 적용한 경우에 임계 Rayleigh 수가 더 작게 얻어졌다.

The Influence of AlN Buffer Layer Thickness on the Growth of GaN on a Si(111) Substrate with an Ultrathin Al Layer

  • Kwon, Hae-Yong;Moon, Jin-Young;Bae, Min-Kun;Yi, Sam-Nyung;Shin, Dae-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권3호
    • /
    • pp.461-467
    • /
    • 2008
  • It was studied the effect of a pre-deposited ultrathin Al layer as part of a buffer layer for the growth of GaN. AlN buffer layers were deposited on a Si(111) substrate using an RF sputtering technique, followed by GaN using hydride vapor phase epitaxy (HVPE). Several atomic layers of Al were deposited prior to AlN sputtering and the samples were compared with the others grown without pre-deposition of Al. And it was also studied the influence of AlN buffer layer thickness on the growth of GaN. The peak wavelength of the photoluminescence (PL) was varied with increasing the thickness of the GaN and AlN layers. The optimum thickness of AlN on a Si(111) substrate with an ultrathin Al layer was about $260{\AA}$. Scanning electron microscope (SEM) images showed coalescent surface morphology and X-ray diffraction (XRD) showed a strongly oriented GaN(0002) peak.

전면 발광 유기 발광 소자용 반투명 금속의 전기적 및 광학적 특성 (Electrical and Optical Properties of Semitransparent Metal Electrodes for Top-emission Organic Light-emitting Diodes)

  • 신은철;안희철;김태완
    • 한국전기전자재료학회논문지
    • /
    • 제21권10호
    • /
    • pp.938-942
    • /
    • 2008
  • Electrical and optical properties of semitransparent Ag and Al layer were studied, which are used for the electrodes in top-emission organic light-emitting diodes. Sheet resistance and transmittance of visible light through a thin layer were measured and analyzed. Several thin metal layers of Ag and Al were deposited onto a glass substrate up to a thickness of 50 nm using a thermal evaporation. Sheet resistance measurements show that a layer thickness is needed more than 15 nm and 20 nm for Ag and Al, respectively, when a proper sheet resistance is assumed to be less than $50{\Omega}/sq$. From the measurements of transmittance of visible light through a thin-metal layer, metallic behavior was observed when the layer thickness is over 25 nm for both films. Thus, from a study of sheet resistance and transmittance of visible light, a minimum proper thickness of semitransparent metal layer is 20 nm and 25 nm for Ag and Al, respectively.

전자 수송층 BCP의 두께변환에 따른 유기발광소자 효율 개선 (Efficiency Improvement of Organic Light-emitting Diodes depending on the Thickness Variation of BCP using Electron Transport Layer)

  • 김원종;신현택;홍진웅
    • 한국전기전자재료학회논문지
    • /
    • 제22권4호
    • /
    • pp.327-332
    • /
    • 2009
  • In the devices structure of ITO/N,N'-diphenyl-N,N' bis (3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD) /tris (8-hydroxyquinoline)aluminum$(Alq_3)$electron-transport-layer(ETL)(2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline(BCP))/Al, we have studied the efficiency improvement of organic light-emitting diodes depending on the thickness variation of BCP using electron transport layer. The thickness of TPD and $Alq_3$ was manufactured 40 nm, 60 nm under a base pressure of $5{\times}10^{-6}$ Torr using at thermal evaporation, respectively. The TPD and $Alq_3$ layer were evaporated to be deposition rate of $2.5{\AA}/s$. And the BCP was evaporated to be a4 a deposition of $1.0{\AA}/s$. As the experimental results, we found that the luminous efficiency and the external quantum efficiency of the device is superior to others when thickness of BCP is 5 nm. Also, operating voltage is lowest. Compared to the ones from the devices without BCP layer, the luminous efficiency and the external quantum efficiency were improved by a factor of four hundred ninty and five hundred, respectively. And operating voltage is reduced to about 2 V.

SIL 헤드유사 근접장 시스템 개발을 위한 보호막 설계 및 열해석 (Cover Layer Design and Temperature Analysis in Pseudo NFR System Using SIL Head)

  • 김경호;김수경;이성규;박강호;이승엽
    • 정보저장시스템학회논문집
    • /
    • 제1권1호
    • /
    • pp.58-66
    • /
    • 2005
  • Pseudo-Near Field Recording (Pseudo-NFR) system is proposed to prevent contamination and oxidation of media surface occurred in conventional NFR systems. To solve these critical problems of the NFR systems, we investigate the optimal thickness of cover layer for Pseudo NFR. This paper presents the theoretical analysis for cover layer thickness based on the measured length of dust particle and numerical simulation for the temperature distribution using Finite Difference Time Domain (FDTD) method and heat conduction equation. To verify the simulation results, we conduct and compare simulation results in case of far field MO recording and near field MO recording. A measured dust particle length in general environment was mostly less than $20{\mu}m$, and the optimal thickness of cover layer is $30{\mu}m$ in this case. Based on the designed optimal cover layer thickness, temperature distribution is simulated to have $800{\~}850^{\circ}C$.

  • PDF

미세다공층의 침투깊이가 다른 기체확산층이 고분자전해질 연료전지의 성능과 내구성에 미치는 영향에 관한 연구 (Study on Performance and Durability of the Proton Exchange Membrane Fuel Cell with Different Micro Porous Layer Penetration Thickness)

  • 조준현;박재만;오환영;민경덕;정지영;이은숙
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.81.2-81.2
    • /
    • 2011
  • The gas diffusion layer (GDL) consists of two main parts, the GDL backing layer, called as a substrate and the micro porous layer (MPL) coated on the GDBL. In this process, carbon particles of MPL penetrates to the GDBL consequently forms MPL penetration part. In this study, the micro porous layer (MPL) penetration thickness is determined as a design parameter of the GDL which affect pore size distribution profile through the GDL inducing different mass transfer characteristics. The pore size distribution and water permeability characteristics of the GDL are investigated and the cell performance is evaluated under fully/low humidification conditions. Transient response and voltage instability are also studied. In addition, to determine the effects of MPL penetration on the degradation, the carbon corrosion stress test is conducted. The GDL that have deep MPL penetration thickness shows better performance in high current density region because of enhanced water management, however, loss of penetrated MPL parts is shown after aging and it induces worse water management characteristics.

  • PDF

$SiO_2-Al_2O_3-MgO$계 결정화 유리 솔더에 의한 질화규소의 접합에 관한 연구 (A Study for Joining of Silicon Nitride with Crystallized Glass Solder of $SiO_2-Al_2O_3-MgO$ System)

  • 안병국
    • Journal of Welding and Joining
    • /
    • 제21권1호
    • /
    • pp.107-113
    • /
    • 2003
  • Joining of $Si_3N_4$ to $Si_3N_4$ with crystallized glass solder was studied. $SiO_2-Al_2O_3-MgO$ glass with $P_2O_5$ as a crystallizing reagent was used as a solder. To improve the hish temperature toughness of joined specimen, two stage heat treatment was applied to Joined sample for the crystallization of joined layer, Two factors, i.e. thickness of soldered layer and crystallization were taken and thier effects on joining strength were investigated by a SEM-EDX observation of joined interface and bending strength both at room and elevated temperatures. Obtained results are summarized as follows: (1) Nitrogen diffused from $Si_3N_4$ to solder during the Joining process. Average amount of nitrogen in soldered layer depended on the thickness of the soldered layer and increased with decrease of the thickness. (2) Joining strength of the specimen having a thinner soldered layer was stronger than that of thicker layer. This can be mainly attributed to the difference of the nitrogen content in the soldered layer. (3) Higher content of nitrogen in solder brought forth higher viscosity of the solder. Hence the crystallization of the solder become more difficult in thinner layer of the solder than thicker one. (4) Thus, the effect of crystallization was evaluated mostly by the thicker layer specimen. Crystallization of soldered layer improved markedly the fracure strength of joining at higher temperatures than the softening temperature of glass solder.