진생베리에 포함이 되어 있는 진세노사이드들은 인체에 유용한 다양한 생리기능물질을 포함한 것으로 알려졌다. 특히 진생베리는 진세노사이드 Re가 다량으로 함유된 것으로 알려 졌으나 추출공정은 비교적 연구가 이루어지지 않았기 때문에 본 연구에서는 진생베리로부터 복합 용매인 주정과 정제수를 이용하여 최적 공정 조건 확립을 수행하였다. 진생베리 추출물 제조를 위해서 건조 진생베리 분말 10 g를 부직포에 담아 250 mL 추출용 둥근 플라스크에 넣고 150 mL 용매를 넣어 내용물이 완전히 잠기게 한 후에 플라스크를 냉각 순환 수조에 연결을 하여 환류 추출하였다. 추출 과정은 주정과 정제수의 혼합비율, 복합용매의 추출 온도, 추출 시간 및 추출 회수에 따라 수행하였다. 추출 후 진세노사이드 Re, Rg1, Rd 및 조 진세노사이드의 함량 및 수율을 비교하였다. 최적 추출조건으로 주정 및 정제수 의 비율은 70% 대 30%, 추출온도는 $80^{\circ}C$, 추출 시간은 4시간, 추출 횟수는 2회로 결정되었다. 최적 추출 공정 조건에서 총 진세노사이드 함량은 건조 진생베리 g 당 약 88.6 mg이었다. 주요 진세노사이드의 분포는 Rb1이 5.3%, Rc가 5.2%, Rd가 14.3%, Re가 51.5%, Rf가 8.1%, Rg1이 15.7%이었다. 전체 추출 진세노사이드 중에 protopanaxatriol 계통의 진세노사이드가 약 80%를 차지하였다.
본 논문에서는 개선된 특징추출을 이용한 원자력 발전소 증기발생기 세관의 결함 형태 분류에 대한 연구를 수행한다. 본 논문에서는 4가지 축대칭 결함, 즉 I-In 형태, I-Out 형태, V-In 형태, V-Out 형태 결함을 고려한다. 유한요소법에 기초한 수치해석 프로그램을 이용하여 결함의 폭과 깊이를 변화시켜가면서 400개의 와전류탐상시험(ECT) 신호를 생성하였다. 이와 같이 생성된 ECT 신호로부터 새로운 특징을 제안하였는데, 여기에는 최대 임피던스 값을 갖는 점과 최대 임피던스 값의 1/2의 값을 갖는 점 사이의 위상각과 최대임피던스 값을 갖는 점과 최대 임피던스 값의 10%, 20%, 30%, 40%를 갖는 점사이의 위상각들이 포함된다. 또한, 결함형태를 분류하기 위하여 은닉층이 하나인 다층퍼셉트론을 사용하였다. 컴퓨터 모의실험 연구를 통하여 제안된 방법이 최대오차와 평균제곱오차 측면에서 향상된 결함 분류 성능을 얻는다는 것을 보였다.
Kim, Hye-Jin;Byun, Young-Gi;Choi, Jae-Wan;Han, You-Kyung;Kim, Yong-Il
대한원격탐사학회:학술대회논문집
/
대한원격탐사학회 2007년도 Proceedings of ISRS 2007
/
pp.238-242
/
2007
Today's commercial high resolution satellite imagery such as that provided by IKONOS and QuickBird, offers the potential to extract useful spatial information for geographical database construction and GIS applications. Digital maps supply the most generally used GIS data probiding topography, road, and building information. Currently, the building information provided by digital maps is incompletely constructed for GIS applications due to planar position error and warped shape. We focus on extracting of the accurate building information including position, shape, and height to update the building information of the digital maps and GIS database. In this paper, we propose a new method of 3D building information extraction with a single high resolution satellite image and digital map. Co-registration between the QuickBird image and the 1:1,000 digital maps was carried out automatically using the RPC adjustment model and the building layer of the digital map was projected onto the image. The building roof boundaries were detected using the building layer from the digital map based on the satellite azimuth. The building shape could be modified using a snake algorithm. Then we measured the building height and traced the building bottom automatically using triangular vector structure (TVS) hypothesis. In order to evaluate the proposed method, we estimated accuracy of the extracted building information using LiDAR DSM.
In Video streaming environment, we must consider terminal and network characteristics, such as display resolution, frame rate, computational resource, network bandwidth, etc. The JVT (Joint Video Team) by ISO/IEC MPEG and ITU-TVCEG is currently standardizing Scalable Video Coding (SVC). This can represent video bitstreams in different sealable layers for flexible adaptation to terminal and network characteristics. This characteristic is very useful in video streaming applications. One fully scalable video can be extracted with specific target spatial resolution, temporal frame rate and quality level to match the requirements of terminals and networks. Besides, the extraction process is fast and consumes little computational resource, so it is possible to extract the partial video bitstream online to accommodate with changing network conditions etc. With all the advantages of SVC, we design and implement a network-adaptive SVC streaming system with an SVC extractor and a streamer to extract appropriate amounts of bitstreams to meet the required target bitrates and spatial resolutions. The proposed SVC extraction is designed to allow for flexible switching from layer to layer in SVC bitstreams online to cope with the change in network bandwidth. The extraction is made in every GOP unit. We present the implementation of our SVC streaming system with experimental results.
대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
/
pp.259-263
/
2001
There are several steps such as slicing, lapping, chemical etching and mechanical polishing in the silicon wafer production process. The chemical etching step is necessary to remove damaged layer caused In the slicing and lapping steps. The typical etching liquor is the acid mixture comprising nitric acid, acetic acid and hydrofluoric acid. At present, the waste acid is treated by a neutralization method with a high alkali cost and balky solid residue. A solvent extraction method is applicable to separate and recover each acid. Acetic acid is first separated from the waste liquor using 2-ethlyhexyl alcohols as an extractant. Then, nitric acid is recovered using TBP(Tri-butyl phosphate) as an extractant. Finally hydrofluoric acid is separated with the TBP solvent extraction. The expected recovered acids in this process are 2㏖/l acetic acid, 6㏖/1 nitric acid and 6㏖/l hydrofluoric acid. The yields of this process are almost 100% for acetic acid and nitric acid. On the other hand, it is important to recover and reuse the metal values contained in various industrial wastes in a viewpoint of environmental preservation. Most of industrial products are made through the processes to separate impurities in raw materials, solid and liquid wastes being necessarily discharged as industrial wastes. Chemical methods such as solvent extraction, ion exchange and membrane, and physical methods such as heavy media separation, magnetic separation and electrostatic separation are considered as the methods for separation and recovery of the metal values from the wastes. Some examples of the application of solvent extraction to the treatment of wastes such as Ni-Co alloy scrap, Sm-Co alloy scrap, fly ash and flue dust, and liquid wastes such as plating solution, the rinse solution, etching solution and pickling solution are introduced.
불규칙하고 복잡한 다층(multi-layer) VLSI 배선의 커패시턴스 추출을 위한 빠르고 정확한 새로운 방법을 개발하였다. 복잡한 다층 배선구조에서 3차원 field-solver를 사용하여 커패시턴스를 구하는 것은 현실적이지 않기 때문에 근사적 3차원 커패시턴스 추출 방법을 제안한다. 꺽이는 부분(bend)과 상이한 배선사이의 거리를 갖는 동일한 층내의 배선은 불연속한 부분과 만나는 곳을 분할하고 각각의 부분에 2차원 커패시턴스 추출 방법을 사용하여 커패시턴스를 추출하였다. 또한 차폐층(shielding layer)을 갖는 다층 배선 구조에서의 커패시턴스는 시스템 내의 전하의 분포를 조사함으로써 시스템을 간소화 시킨 후 평판 그라운드 기반 2차원 커패시턴스와 간단한 구조로부터 독립적으로 계산될 수 있는 차폐효과를 결합하여 근사적3차원 커패시턴스 추출 방법을 적용하였다. 불규칙한 다층 배선 구조에 대하여 설계된 레이아웃으로부터 해석적으로 구할 수 있는 변수와 평판 그라운드를 사용한 2차원 커패시턴스 추출 방법을 사용하므로 정확하면서도 신속하게 커패시턴스를 추출할 수 있어 일반적인 3차원 방법보다 비용 측면에서 훨씬 효과적이다. 제안된 근사적 3차원 방법을 통해 구한 커패시턴스는 3차원 field-solver를 기반으로 구한 커패시턴스와 오차율 5% 이내의 정확성을 나타낸다.
본 연구는 온라인 한글 필기체 인식을 위한 전처리 단계로서 다층구조 신경망을 이용하여 한글 자획의 특징을 추출하였다. 특징추출을 위한 신경망은 경쟁 자율학습하는 특성을 가진 Masking field 모델을 이용하여 구성하였다. 이 모델에 의해서 off영역이 없는 on영역만의 수용영역을 구성하여 한글 자획에 내포된 방향, 연결점 및 모서리 특징 추축을 병렬처리하였고, 이 모델의 수정에 의하여 방향유지특성을 구현하였다. 입력자획의 폭이 한 화소로 제한됨에 따라 입력 정보의 교란을 설정한 수용영역에 의하여 제거 할 수 있었다. 구성한 신경망은 순차적으로 입력되는 자획으로부터 동필특징을 추출하고, 이것을 집적하여 자획 특징을 추출한다. 한글자획의 특징추출 결과는 자획내의 방향특징들의 통계적 분포에 따르는 출력을 얻을 수 있었으며, 자획패턴이 고정되지 않은 온라인 한글 필기체의 자획인식에 유용하리라 생각된다.
본 논문에서는 양서류 울음소리 구별을 CNN(Convolutional Neural Network)에 적용하기 위한 방법으로 공분산 행렬과 모듈로그램(modulogram)을 제안한다. 먼저, 멸종 위기 종을 포함한 양서류 9종의 울음소리를 자연 환경에서 추출하여 데이터베이스를 구축했다. 구축된 데이터를 CNN에 적용하기 위해서는 길이가 다른 음향신호를 정형화하는 과정이 필요하다. 음향신호를 정형화하기 위해서 분포에 대한 정보를 나타내는 공분산 행렬과 시간에 대한 변화를 내포하는 모듈로그램을 추출하여, CNN의 입력으로 사용했다. CNN은 convolutional layer와 fully-connected layer의 수를 변경해 가며 실험하였다. 추가적으로, CNN의 성능을 비교하기 위해 기존에 음향 신호 분석에서 쓰이는 알고리즘과 비교해보았다. 그 결과, convolutional layer가 fully-connected layer보다 성능에 큰 영향을 끼치는 것을 확인했다. 또한 CNN을 사용하였을 때 99.07 % 인식률로, 기존에 음향분석에 쓰이는 알고리즘 보다 높은 성능을 보인 것을 확인했다.
Convolution neural networks (CNNs) show notable performance in image processing and are used as representative core models. CNNs extract and learn features from large amounts of train dataset. In general, it has a structure in which a convolution layer and a fully connected layer are stacked. The core of CNN is the convolution layer. The size of the kernel used for feature extraction and the number that affect the depth of the feature map determine the amount of weight parameters of the CNN that can be learned. These parameters are the main causes of increasing the computational complexity and memory usage of the entire neural network. The most computationally expensive components in CNNs are fully connected and spatial convolution computations. In this paper, we propose a Fourier Convolution Neural Network that performs the operation of the convolution layer in the Fourier domain. We work on modifying and improving the amount of computation by applying the fast fourier transform method. Using the MNIST dataset, the performance was similar to that of the general CNN in terms of accuracy. In terms of operation speed, 7.2% faster operation speed was achieved. An average of 19% faster speed was achieved in experiments using 1024x1024 images and various sizes of kernels.
접촉분해경유의 산화반응후 포함된 산화황화합물을 분리하기위해 다양한 용매를 사용하여 용매추출에 관한 연구를 수행하였다. 용매로는 극성을 가진 물, N-메틸피놀리논, 에틸아세테이트, 디메틸포름아마이드, 이소프로필알코올, 아세토니트릴, 메탄올등을 사용하였다. 실험결과, 접촉분해경유와 용매와의 층분리는 적절한 양의 물을 첨가한 경우에 이루어졌으며, 물과 N-메틸피놀리논을 혼합한 혼합용매가 접촉분해경유로부터 산화황화합물의 선택적인 분리에 가장 적절하였다. 또한 접촉분해경유로부터 황화합물을 99.5% 이상으로 제거하기 위해선, 4단 정도의 평형추출이 필요하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.