• 제목/요약/키워드: Layer design

검색결과 3,589건 처리시간 0.036초

A New Dynamic Transmission-Mode Selection Scheme for AMC/HARQ-Based Wireless Networks

  • Ma, Xiaohui;Li, Guobing;Zhang, Guomei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권11호
    • /
    • pp.5360-5376
    • /
    • 2017
  • In this paper, we study the cross-layer design for the AMC/HARQ-based wireless networks, and propose a new dynamic transmission-mode selection scheme to improve system spectrum efficiency. In the proposed scheme, dynamic thresholds for transmission-mode selection in each packet transmission and retransmission are jointly designed under the constraint of the overall packet error rate. Comparing with the existing schemes, the proposed scheme is inclined to apply higher modulation order at the first several (re)transmissions, which corresponds to higher-rate transmission modes thus higher average system spectrum efficiency. We also extend the cross-layer design to MIMO (Multi-input Multi-output) communication scenarios. Numerical results show that the proposed new dynamic transmission-mode selection scheme generally achieves higher average spectrum efficiency than the conventional and existing cross-layer design.

6.6kV급 고온초전도 한류기용 HTS 코일의 절연 설계 및 시험 (Insulation Design and Testing of HTS coil for 6.6 kV Class HTSFCL)

  • 백승명;정종만;곽동순;류엔반둥;김상현
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 추계학술대회 논문집
    • /
    • pp.263-268
    • /
    • 2003
  • The Electrical insulation design and testing of high temperature superconducting (HTS) coil for high temperature superconducting fault current limiter (HTSFCL) has been performed. Electrical insulating factors of HTS coil for HTSFCL are turn-to-turn, layer-to-layer. The electrical insulation of turn-to-turn depends on surface length, and the electrical insulation of layer-to-layer depends on surface length and breakdown strength of L$N_2$. Therefore, two basic characteristics of breakdown and flashover voltage were experimentally investigated to design electrical insulation for 6.6㎸ Class HTSFCL. We used Weibull distribution to set electric field strength for insulation design. And mini-model HTS coil for HTSFCL was designed by using Weibull distribution and was manufactured to investigate breakdown characteristics. The mini-model HTS coil had passed in AC and Impulse withstand test.

  • PDF

건물 에너지 소비량에 영향을 미치는 옥상녹화시스템 설계변수 평가에 관한 사례 연구 (A Case Study on the Design Variables Evaluation of Green Roof System effecting on Building Energy Conservation)

  • 최정민
    • 한국태양에너지학회 논문집
    • /
    • 제35권3호
    • /
    • pp.41-48
    • /
    • 2015
  • This study is to find out the major design variables of Green roof system effecting on the building energy consumption. Therefore, in three categories of green roof system, namely, foliage layer, soil layer and irrigation, 10 design variables are selected and simulated with one-story case building. Simulation is carried out with Design Builder and EnergyPlus. Finally, it was found out the effects of major variables affecting on the building heating and cooling energy and how they are affecting on the heating and cooling seasons respectively.

Design of geocell reinforcement for supporting embankments on soft ground

  • Latha, G. Madhavi
    • Geomechanics and Engineering
    • /
    • 제3권2호
    • /
    • pp.117-130
    • /
    • 2011
  • The methods of design available for geocell-supported embankments are very few. Two of the earlier methods are considered in this paper and a third method is proposed and compared with them. In the first method called slip line method, plastic bearing failure of the soil was assumed and the additional resistance due to geocell layer is calculated using a non-symmetric slip line field in the soft foundation soil. In the second method based on slope stability analysis, general-purpose slope stability program was used to design the geocell mattress of required strength for embankment. In the third method proposed in this paper, geocell reinforcement is designed based on the plane strain finite element analysis of embankments. The geocell layer is modelled as an equivalent composite layer with modified strength and stiffness values. The strength and dimensions of geocell layer is estimated for the required bearing capacity or permissible deformations. These three design methods are compared through a design example. It is observed that the design method based on finite element simulations is most comprehensive because it addresses the issue of permissible deformations and also gives complete stress, deformation and strain behaviour of the embankment under given loading conditions.

두 층 마이크로스트립 구조를 이용한 대역통과 여파기 설계 (Design of a Bandpass Filter using Two Layer Microstrip Structure)

  • 천동완;박정훈;신철재
    • 대한전자공학회논문지TC
    • /
    • 제40권3호
    • /
    • pp.18-24
    • /
    • 2003
  • 본 논문에서는 두 층 마이크로스트립 구조를 이용한 공진기 구조를 제안하고, 이를 이용해 대역통과 여파기를 설계하였다. 제안된 공진기 구조는 첫 번째 층에 전송선로를 U자형으로 꺽은 헤어핀형태의 공진기를 위치시키고, 두 번째 층에는 첫 번째 층 전송선로의 끝 부분 바로 위에 broadside 결합구조를 위치시킨 형태이다. 이러한 구조는 일반적인 결합선로를 이용한 단일 층 여파기에 비해 설계변수가 다양하기 때문에 여파기 설계가 훨씬 수월하다. 본 논문에서는 강한 결합특성 때문에 광 대역 여파기에만 적용되어왔던 다층구조를 이용해 협 대역 여파기를 구현하였다. 중심주파수 4 ㎒, 부분대역폭 3 % 인 여파기를 구현하였으며, 제작과 측정을 통해 다층기판으로 협 대역 여파기를 구현 할 수 있음을 확인하였다.

A Study on the Cold Reserving Performance of PET Bottle with Shrinkage Film

  • Hong, Dae Gi;Lyu, Min Young
    • Elastomers and Composites
    • /
    • 제54권2호
    • /
    • pp.123-127
    • /
    • 2019
  • Shrink film is currently being used for plastic container lavels to avoid the use of glue. Polyethylene terephthalate (PET) bottle lavels also use shrink films in the same PET materials for easy recycling of PET bottles. An air layer is generated between the shrink film and PET bottle surface due to the bent shape of the bottle surface. This air layer can insulate external heat, as air has a relatively lower thermal conductivity. In this study, the insulation property of the air layer was examined by computer simulation. Two PET bottle models were used, one with and the other without an air layer between the PET bottle surface and lavel. The two bottle models were filled with cold liquid and exposed to room temperature for 6 h, and the temperatures of the contents were then compared. The results showed that the temperature of the contents in the bottle with the air layer was lower than that without the air layer by at least $2^{\circ}C$. This study suggests an effective lavel design of PET bottles while ensuring that the temperature of the bottle contents is maintained.

능동구속감쇠 기법을 이용한 복합적층보의 진동 제어 (Vibration Control of Laminated Composite Beams Using Active Constrained Layer Damping Treatment)

  • 강영규;최승복
    • 한국소음진동공학회논문집
    • /
    • 제11권7호
    • /
    • pp.261-266
    • /
    • 2001
  • The flexural vibration of laminated composite beams with active and passive constrained layer damping has been investigated to design a structure with maximum possible damping capacity. The equations of motion are derived fro flexural vibrations of symmetrical,. multi-layer laminated beams. The damping ratio and model damping of the first bending mode are calculated by means of iterative complex eigensolution method. The direct negative velocity feedback control is used for the active constrained layer damping. It is shown that the flexible laminated beam is more effective in the vibration control for both active and passive constrained layer damping. and this paper addresses a design strategy of laminated composite under flexural vibrations with constrained layer damping.

  • PDF

점탄성 물질의 온도와 주파수 의존성을 고려한 구속형 제진보의 최대 손실계수 설계 (Optimal Layout Design of Frequency- and Temperature-Dependent Viscoelastic Materials for Maximum Loss Factor of Constrained-Layer Damping Beam)

  • 이두호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.1023-1026
    • /
    • 2007
  • Optimal damping layout of the constrained viscoelastic damping layer on beam is identified with temperatures by using a gradient-based numerical search algorithm. An optimal design problem is defined in order to determine the constrained damping layer configuration. A finite element formulation is introduced to model the constrained damping layer beam. The four-parameter fractional derivative model and the Arrhenius shift factor are used to describe dynamic characteristics of viscoelastic material with respect to frequency and temperature. Frequency-dependent complex-valued eigenvalue problems are solved by using a simple resubstitution algorithm in order to obtain the loss factor of each mode and responses of the structure. The results of the numerical example show that the proposed method can reduce frequency responses of beam at peaks only by reconfiguring the layout of constrained damping layer within a limited weight constraint.

  • PDF

Simulation and Design of Optimized Three-Layer Radiation Shielding to Protect Electronic Boards of Satellite Revolving in Geostationary Earth Orbit (GEO) Orbit against Proton Beams

  • Ali Alizadeh;Gohar Rastegarzadeh
    • Journal of Astronomy and Space Sciences
    • /
    • 제41권1호
    • /
    • pp.17-23
    • /
    • 2024
  • The safety of electronic components used in aerospace systems against cosmic rays is one of the most important requirements in their design and construction (especially satellites). In this work, by calculating the dose caused by proton beams in geostationary Earth orbit (GEO) orbit using the MCNPX Monte Carlo code and the MULLASSIS code, the effect of different structures in the protection of cosmic rays has been evaluated. A multi-layer radiation shield composed of aluminum, water and polyethylene was designed and its performance was compared with shielding made of aluminum alone. The results show that the absorbed dose by the simulated protective layers has increased by 35.3% and 44.1% for two-layer (aluminum, polyethylene) and three-layer (aluminum, water, polyethylene) protection respectively, and it is effective in the protection of electronic components. In addition to that, by replacing the multi-layer shield instead of the conventional aluminum shield, the mass reduction percentage will be 38.88 and 39.69, respectively, for the two-layer and three-layer shield compared to the aluminum shield.

한국형포장설계프로그램 및 유한요소해석을 이용한 동상방지층의 구조적 성능 평가 (Finite Element Analysis of Structural Performance of Anti-Freezing Layer via the Korea Pavement Research Program)

  • 김도완;이준규;문성호
    • 한국도로학회논문집
    • /
    • 제18권2호
    • /
    • pp.83-90
    • /
    • 2016
  • PURPOSES : Nowadays, cavity phenomena occur increasingly in pavement layers of downtown areas. This leads to an increment in the number of potholes, sinkholes, and other failure on the road. A loss of earth and sand from the pavement plays a key role in the occurrence of cavities, and, hence, a structural-performance evaluation of the pavement is essential. METHODS: The structural performance was evaluated via finite-element analysis using KPRP and KICTPAVE. KPRP was developed in order to formulate a Korean pavement design guide, which is based on a mechanical-empirical pavement design guide (M-EPDG). RESULTS: Installation of the anti-freezing layer yielded a fatigue crack, permanent deformation, and international roughness index (IRI) of 13%, 0.7 cm, and 3.0 m/km, respectively, as determined from the performance analysis conducted via KPRP. These values satisfy the design standards (fatigue crack: 20%, permanent deformation: 1.3 cm, IRI: 3.5 m/km). The results of FEM, using KICTPAVE, are shown in Figures 8~12 and Tables 3~5. CONCLUSIONS: The results of the performance analysis (conducted via KPRP) satisfy the design standards, even if the thickness of the anti-freezing layer is not considered. The corresponding values (i.e., 13%, 0.7 cm, and 3.0 m/km) are obtained for all conditions under which this layer is applied. Furthermore, the stress and strain on the interlayer between the sub-grade and the anti-freezing layer decrease gradually with increasing thickness of the anti-freezing layer. In contrast, the strain on the interlayer between the sub-base and the anti-freezing layer increases gradually with this increase in thickness.