• Title/Summary/Keyword: Layer coefficient

Search Result 1,438, Processing Time 0.039 seconds

Interaction of Local Roughness and Turbulent Boundary Layer (국소거칠기와 난류 경계층과의 상호작용)

  • 문철진
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.2
    • /
    • pp.120-124
    • /
    • 1991
  • An interaction of turbulent boundary layer and local roughness effects was evaluated to investigate the shear frictional coefficient in diffuser. Clauser roughness function was applied to Karman's integral equation for governing equation. The roughness of overall and local diffuser surfaces were calculated using Cole's wall and wake law and Clauser's roughness function for turbulent boundary layer characteristics. The calculating results were compared with the experimental results of other paper. It shows some significant improyements for shear frictional coefficient. Computer code was then used to confirm the behavior of local frictional coefficient along with diffuser roughness surface for some reduction of shear flow stress.

  • PDF

Frictional characteristics of coating layer in diesel engine piston ring (디젤엔진 피스톤 링 코팅 층의 마찰특성)

  • Jang, J.H.;Joo, B.D.;Lee, H.J.;Kim, E.H.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.294-297
    • /
    • 2009
  • The frictional behaviors of Cermets/Cr-Ceramics and Cu-Al coatings of piston ring were investigated. Friction tests were carried out by pin-on-disk test and materials properties of coating layer were analyzed by nano indentation tester. Higher friction coefficient was obtained at harder coating with rougher surface. In case of hard-coating, the scratch depth, width and pile-up height had close relationship with indentation hardness. So the scratch width, depth and pile-up height increases with decreasing friction coefficient. But in case of soft-coating, the friction coefficients are strongly dependent on the morphological characteristics after nano scratching more than indentation hardness.

  • PDF

A Study of Sliding Friction and Wear Properties for PTFE Layer coated on Steel (철강재료위 coating된 PTFE 막층의 미끄럼 마찰마모특성 연구)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.24 no.2
    • /
    • pp.96-103
    • /
    • 2008
  • PTFE is generally utilized as the form of composites with adding various fillers. The purpose of this paper lies on clarifying the friction and wear properties of the PTFE coating layer on steel. Especially, the effects of PTFE powder size for coating and surface roughness of the counter material on the properties are investigated. Sliding friction and wear tests are conducted at several sliding speeds by employing two types of PTFE coating layer using different powder sizes. One type of coating layer is composed of uniform fine powder, whereas the other type is made up of mixture powder of different sizes. As results, it is found that PTFE coating layer are effective to improve the wear resistance and to reduce the friction coefficient. It is clear that PTFE coating layers are abrasively removed by asperities of the counter material during sliding contact. However, PTFE coating layer with uniform fine powder shows somewhat better wear resistance than that with mixture powder of different sizes in low sliding speed region. It can be seen that the wear of the coating layer are drastically reduced because wear fragment from counter material are transferred to the coating layer. On the other hand, friction coefficient is shown not to be directly related with PTFE powder size in coating layer.

Natural Convection for Air-Layer between Body Skin and Clothing with Considering Coefficient of Permeability (투과계수를 고려한 의복과 인체 사이의 공기층에서 자연대류 특성)

  • 지명국;배강렬;정효민;정한식;추미선
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1282-1287
    • /
    • 2001
  • This study presents the numerical analysis of natural convection of a micro- environments with air permeability in the clothing air-layer. As a numerical model the clothing air layer of shoulder and arm were adopted. Finite volume method for two-dimensional laminar flow was used for the analysis of flow and thermal characteristics of velocity, temperature and concentration in the air layer between body and clothing. As temperature boundary conditions, a body skin has a high temperature with $34^{\circ}C$ and the environmental temperatures are 5, 15 and $25^{\circ}C$ for various permeability coefficients. The distributions of concentration, temperature and velocity are shown that two large cells form at horizontal and vertical air layer, respectively. As the temperature difference between body skin and environment decreases, the heat transfer is decreased rapidly.

  • PDF

Evaluation of Field Compaction Density by Non-nuclear Density Gauge (다짐밀도 측정장비(Non-nuclear Type)를 사용한 현장 다짐밀도 평가)

  • Kim, Yeong Min;Im, Jeong Hyuk;Yang, Sung Lin;Kim, Ki Hyun;Hwang, Sung Do;Jeong, Kyu Dong
    • International Journal of Highway Engineering
    • /
    • v.17 no.1
    • /
    • pp.51-58
    • /
    • 2015
  • PURPOSES : The objective of this study is to compare the densities of asphalt pavements measured both in the field and in the laboratory, and also to evaluate the applicability of field density measuring equipment, such as the pavement quality indicator (PQI), by using statistical analysis. METHODS : For the statistical analysis of the density measured from asphalt pavement, student t-tests and a coefficient of correlation are investigated. In order to compare the measured densities, two test sections are prepared, with a base layer and an intermediate layer constructed. Each test section consists of 9 smaller sections. During construction, the field densities are measured for both layers (base and intermediate) in each section. Core samples are extracted from similar regions in each section, and moved to the laboratory for density measurements. All the measured densities from both the field and laboratory observations are analyzed using the selected statistical analysis methods. RESULTS AND CONCLUSION : Based on an analysis of measured densities, analysis using a correlation coefficient is found to be more accurate than analysis using a student t-test. The correlation coefficient (R) between the field density and the core density is found to be very low with a confidence interval less than 0.5. This may be the result of inappropriate calibration of the measuring equipment. Additionally, the correlation coefficient for the base layer is higher than for the intermediate layer. Finally, we observe that prior to using the density measuring equipment in the field, a calibration process should be performed to ensure the reliability of measured field densities.

Estimation of Heat Transfer Coefficient at the Upper Layer of Cryogenic Propellant (극저온 추진제 상층부에서의 열전달계수 예측)

  • Kwon, Oh-Sung;Kim, Byung-Hun;Kil, Gyoung-Sub;Ko, Young-Sung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.3
    • /
    • pp.82-89
    • /
    • 2012
  • The temperature of cryogenic propellant in the propellant tank increases during flight due to heat input from surroundings. The propellant which temperature rises up over the required condition of turbo-pump remains as unusable propellant at the end of flight. In this paper the estimation method of the heat transfer coefficient at the upper layer of cryogenic propellant was presented. The heat transfer mode at the propellant upper layer was considered as conduction. Temperature distributions near propellant surface obtained from heat transfer coefficient were compared with test data to show the possibility of this method.

The Influence of Annealing Temperature on Mechanical Properties and Friction Coefficient of Coating Layer in Galvannealed Sheet Steel (용융아연도금강판에서 어닐링 온도변화에 따른 화합물화가 도금층 기계적 특성 및 마찰계수에 미치는 영향)

  • Jeon J.S.;Lee J. M.;;Kim D. J.;Kang Y.S.;Kim B. M.
    • Transactions of Materials Processing
    • /
    • v.14 no.8 s.80
    • /
    • pp.696-703
    • /
    • 2005
  • In the modern days, a galvannealed sheet steel (GA) instead of a cold rolled steel sheet has been widely used as an alternative to extend the life of automotive body. Accordingly, the mechanical properties of GA for automobiles were taken into account and studied by examining their variation with annealing temperature. To clarify the effect of surface features on the mechanical and frictional properties of GA, the several tests such as nanoindentation, Vickers hardness and nano scratch test were executed. The frictional characteristics of coating layers of GA were examined through nano scratch test in this study. The friction coefficient of coating layers on the surface was obtained from the nano scratch. The variation of friction coefficient versus velocity and pressure was taken into consideration in this paper. Hardness and elastic modulus of coating layer were increased as increasing annealing temperature.

Estimation of Heat Transfer Coefficient at the Upper Layer of Cryogenic Propellant (극저온 추진제 상층부에서의 열전달계수 예측)

  • Kwon, Oh-Sung;Kim, Byung-Hun;Kil, Gyoung-Sub;Ko, Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.709-716
    • /
    • 2011
  • The temperature of cryogenic propellant in the propellant tank increases during flight due to heat input from surroundings. The propellant which temperature rises up over the required condition of turbo-pump remains as unusable propellant at the end of flight. In this paper the estimation method of the heat transfer coefficient at the upper layer of cryogenic propellant was presented. The heat transfer mode at the propellant upper layer was considered as conduction. Temperature distributions near propellant surface obtained from heat transfer coefficient were compared with test data to show the possibility of this method.

  • PDF

Film Cooling from Two Rows of Holes with Opposite Orientation Angles(II) -Blowing Ratio Effect- (반대방향의 방향각을 갖는 2열 분사구조의 막냉각 특성(II) -분사비의 영향-)

  • Ahn, Joon;Jung, In-Sung;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1131-1139
    • /
    • 2001
  • Experimental results are presented, which describe the effect of blowing ratio on film cooling from two rows of holes with opposite orientation angles. The inclination angle is fixed at 35°, and the orientation angles are set to be 45°for the downstream row, and -45°for the upstream row. The studied blowing ratios are 0.5, 1.0 and 2.0. The boundary layer temperature distributions are measured using thermocouple at two downstream locations. Detailed adiabatic film cooling effectiveness and heat transfer coefficient distributions are measured with TLC(Thermochromic Liquid Crystal). The adiabatic film cooling effectiveness and heat transfer coefficient distributions are discussed in connection with the injectant behaviors inferred from the boundary layer temperature distributions. Film cooling performance, represented by heat flux is evaluated from the adiabatic film cooling effectiveness and heat transfer coefficient data. The results show that the investigated geometry provides improved film cooling performance at the high blowing ratios of 1.0 and 2.0.

Effect of Coating Layer Hardness on Frictional Characteristics of Diesel Engine Piston Ring (디젤엔진 피스톤 링 코팅 층의 경도에 따른 마찰특성)

  • Jang, J.H.;Joo, B.D.;Lee, H.J.;Kim, E.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.18 no.6
    • /
    • pp.465-470
    • /
    • 2009
  • The frictional behaviors of Cermets/Cr-Ceramics and Cu-Al coatings of piston ring were investigated. Friction tests were carried out by pin-on-disk test and materials properties of coating layer were analyzed by nano indentation tester. The effect of surface roughness of cylinder liner on the friction coefficient was analyzed. This study provided tribological data of hard and soft piston ring coatings against cylinder liner. The surface roughness does exert an influence on the average friction coefficient, with smoother surfaces generally yielding lower friction coefficients. In case of hard-coating, the scratch depth, width and pile-up height had close relationship with hardness. So the scratch width, depth and pile-up height increases with decreasing friction coefficient. But in case of soft-coating, the friction coefficients are strongly dependent on the morphological characteristics such as, scratch depth, width, pile-up height and elastic modulus.