• Title/Summary/Keyword: Layer Redefinition

Search Result 4, Processing Time 0.021 seconds

The Study on the GIS Software Engine based on PDA using GPS/GIS (GPS/GIS를 이용한 PDA기반 GIS 소프트웨어 엔진 연구)

  • PARK, Sung-Seok;KIM, Chang-Soo;SONG, Ha-Joo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.17 no.1
    • /
    • pp.76-85
    • /
    • 2005
  • GIS (Geographic Information Systems) technology is a necessary function to support location based on service by using GPS in the mobile environment. These mobile systems have basic functional limitations such as a low rate of processing, limited memory capacity, and small screen size. Because of these limitations, most of the mobile systems require development of a reduced digital map to overcome problems with large-volume spatial data. In this paper, we suggest using the reduced digital map format in order to use location based on service in a PDA environment. The processing of the proposed data format consists of map generation, redefinition of layers, creating polygons, and format conversion. The proposed data format reduces the data size by about 98% comparing with DXF format based on the digital map of Busan.

The Design of Web-Linked Digital Map for LBS/GIS Service (LBS/GIS 서비스를 위한 웹 연동 수치지도 설계)

  • Park Sung-Seok;Kim Chang-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.8
    • /
    • pp.1023-1031
    • /
    • 2005
  • LBS(Location Based Service) and GIS (Geographic Information System) are supporting necessary services for system which provides geographic information using location information based on various platforms. However the mobile computing environments such as PDA system have serious limitations in functional viewpoints compare of general computing environments, it has problems for developing GIS system which is providing various information. In this paper, we suggest the reduced methods of digital map and format of web-linked digital mao in order to fit in mobile environment. As a result of map generation, the total capacity of the supported digital map was diminished about $99.34\%$ than the original map.

  • PDF

Efficient QoS Policy Implementation Using DSCP Redefinition: Towards Network Load Balancing (DSCP 재정의를 통한 효율적인 QoS 정책 구현: 네트워크 부하 분산을 위해)

  • Hanwoo Lee;Suhwan Kim;Gunwoo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.715-720
    • /
    • 2023
  • The military is driving innovative changes such as AI, cloud computing, and drone operation through the Fourth Industrial Revolution. It is expected that such changes will lead to a rapid increase in the demand for information exchange requirements, reaching all lower-ranking soldiers, as networking based on IoT occurs. The flow of such information must ensure efficient information distribution through various infrastructures such as ground networks, stationary satellites, and low-earth orbit small communication satellites, and the demand for information exchange that is distributed through them must be appropriately dispersed. In this study, we redefined the DSCP, which is closely related to QoS (Quality of Service) in information dissemination, into 11 categories and performed research to map each cluster group identified by cluster analysis to the defense "information exchange requirement list" on a one-to-one basis. The purpose of the research is to ensure efficient information dissemination within a multi-layer integrated network (ground network, stationary satellite network, low-earth orbit small communication satellite network) with limited bandwidth by re-establishing QoS policies that prioritize important information exchange requirements so that they are routed in priority. In this paper, we evaluated how well the information exchange requirement lists classified by cluster analysis were assigned to DSCP through M&S, and confirmed that reclassifying DSCP can lead to more efficient information distribution in a network environment with limited bandwidth.

A Deep Learning Based Approach to Recognizing Accompanying Status of Smartphone Users Using Multimodal Data (스마트폰 다종 데이터를 활용한 딥러닝 기반의 사용자 동행 상태 인식)

  • Kim, Kilho;Choi, Sangwoo;Chae, Moon-jung;Park, Heewoong;Lee, Jaehong;Park, Jonghun
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.163-177
    • /
    • 2019
  • As smartphones are getting widely used, human activity recognition (HAR) tasks for recognizing personal activities of smartphone users with multimodal data have been actively studied recently. The research area is expanding from the recognition of the simple body movement of an individual user to the recognition of low-level behavior and high-level behavior. However, HAR tasks for recognizing interaction behavior with other people, such as whether the user is accompanying or communicating with someone else, have gotten less attention so far. And previous research for recognizing interaction behavior has usually depended on audio, Bluetooth, and Wi-Fi sensors, which are vulnerable to privacy issues and require much time to collect enough data. Whereas physical sensors including accelerometer, magnetic field and gyroscope sensors are less vulnerable to privacy issues and can collect a large amount of data within a short time. In this paper, a method for detecting accompanying status based on deep learning model by only using multimodal physical sensor data, such as an accelerometer, magnetic field and gyroscope, was proposed. The accompanying status was defined as a redefinition of a part of the user interaction behavior, including whether the user is accompanying with an acquaintance at a close distance and the user is actively communicating with the acquaintance. A framework based on convolutional neural networks (CNN) and long short-term memory (LSTM) recurrent networks for classifying accompanying and conversation was proposed. First, a data preprocessing method which consists of time synchronization of multimodal data from different physical sensors, data normalization and sequence data generation was introduced. We applied the nearest interpolation to synchronize the time of collected data from different sensors. Normalization was performed for each x, y, z axis value of the sensor data, and the sequence data was generated according to the sliding window method. Then, the sequence data became the input for CNN, where feature maps representing local dependencies of the original sequence are extracted. The CNN consisted of 3 convolutional layers and did not have a pooling layer to maintain the temporal information of the sequence data. Next, LSTM recurrent networks received the feature maps, learned long-term dependencies from them and extracted features. The LSTM recurrent networks consisted of two layers, each with 128 cells. Finally, the extracted features were used for classification by softmax classifier. The loss function of the model was cross entropy function and the weights of the model were randomly initialized on a normal distribution with an average of 0 and a standard deviation of 0.1. The model was trained using adaptive moment estimation (ADAM) optimization algorithm and the mini batch size was set to 128. We applied dropout to input values of the LSTM recurrent networks to prevent overfitting. The initial learning rate was set to 0.001, and it decreased exponentially by 0.99 at the end of each epoch training. An Android smartphone application was developed and released to collect data. We collected smartphone data for a total of 18 subjects. Using the data, the model classified accompanying and conversation by 98.74% and 98.83% accuracy each. Both the F1 score and accuracy of the model were higher than the F1 score and accuracy of the majority vote classifier, support vector machine, and deep recurrent neural network. In the future research, we will focus on more rigorous multimodal sensor data synchronization methods that minimize the time stamp differences. In addition, we will further study transfer learning method that enables transfer of trained models tailored to the training data to the evaluation data that follows a different distribution. It is expected that a model capable of exhibiting robust recognition performance against changes in data that is not considered in the model learning stage will be obtained.