• 제목/요약/키워드: Lay-up orientation

검색결과 15건 처리시간 0.025초

CFRP 복합재의 적층방향에 대한 마찰 및 마모 특성 (Friction and Wear Characteristics of Carbon Fiber Reinforced Composites against Lay-up Orientation)

  • 고성위;최영근
    • 동력기계공학회지
    • /
    • 제9권2호
    • /
    • pp.57-64
    • /
    • 2005
  • This paper is the study on dry sliding wear behavior of carbon fiber reinforced epoxy matrix composites against lay-up orientation. Tests were investigated on the effect of the lay-up orientation, fiber sliding direction, load and sliding velocity when circumstance keep continuously at $21^{\circ}C$, 60%RH. Pin-on-disk dry sliding wear tests for each experimental condition were carried out with a carbon fiber reinforced plastic pin on stainless steel disk in order to search the friction and wear characteristics. The wear rates and friction coefficients against the stainless steel counterpart were experimentally determined and the wear mechanisms were microscopically observed. The effect on friction and wear behavior are observed differently, according to various conditions. When sliding took place against counterpart, the highest wear resistance and the lowest friction coefficient were observed in the $[0]_{24s}$ lay-up orientation at anti-parallel direction.

  • PDF

원공노치를 가진 CFRP의 적층방향에 따른 기계적 특성 평가 (The Mechanical Properties Evaluation on Lay-up Orientation Effect of CFRP Laminate Composite with the Hole Notch)

  • 태영일;윤유성;권오헌
    • 한국안전학회지
    • /
    • 제17권1호
    • /
    • pp.25-32
    • /
    • 2002
  • The tensile tests for [0/90]s, [90/0]s, and $[0/{\pm}45/90]s$ laminate composite were accomplished with acoustic sensor and failure processes were recorded by a video camera in real time. Also SEM examinations for fracture and side surface were carried out. The purpose of study is estimation of the failure mechanism and the mechanical properties effected by lay-up orientation for CFRP laminate composite with the hole notch. From the results, mechanical properties were obtained and they are similar between two kinds of cross-ply orientation in CFRP laminate composites, but not on $[0/{\pm}45/90]s$. And accordings to increasing the load, accumulate AE count was increased, regardless of lay-up orientation. Futhermore, failure mechanism was described by a video monitoring and SEM.

Influence of Angle Ply Orientation on the Flexural Strength of Basalt and Carbon Fiber Reinforced Hybrid Composites

  • Mengal, Ali Nawaz;Karuppanan, Saravanan
    • Composites Research
    • /
    • 제28권1호
    • /
    • pp.1-5
    • /
    • 2015
  • In this paper the influence of fiber orientation of basalt and carbon inter-ply fabrics on the flexural properties of hybrid composite laminates was experimentally investigated. Four types of basalt/carbon/epoxy inter-ply hybrid composite laminates with varying angle ply orientation of reinforced basalt fiber and fixed orientation of carbon fiber were fabricated using hand lay-up technique. Three point bending test was performed according to ASTM 7264. The fracture surface analysis was carried out by scanning electron microscope (SEM). The results obtained from the four laminates were compared. Lay-up pattern of $[0B/+30B/-30B/0C]_S$ exhibits the best properties in terms of flexural strength and flexural modulus. Scanning electron microscopy results on the fracture surface showed that the interfacial de-bonding between the fibers and epoxy resin is a dominant fracture mode for all fiber lay-up schemes.

전자파 반사재료로 사용되는 탄소섬유/에폭시 복합재료의 적층 탄소섬유 방향성이 마찰특성에 미치는 영향 (Tribological Properties of Laminated Fiber Orientation in Carbon Fiber/Epoxy Composites for Reflecting Material of the Electromagnetic Wave)

  • 천상욱;김윤명;강호종
    • 공업화학
    • /
    • 제10권5호
    • /
    • pp.778-783
    • /
    • 1999
  • 전자파 반사재료로 사용되는 탄소섬유/에폭시 복합재료의 탄소섬유 배향이 마찰특성에 미치는 영향을 살펴보았다. 마찰 시, 상대 마찰 면과 탄소 섬유/에폭시 복합재료의 적층 방향이 수직인 경우가 수평인 경우에 비해 우수한 마찰특성을 나타내었다. 이는 마찰 면과 복합재료의 적층 방향이 수평인 경우, 에폭시와 탄소섬유의 delamination이 상대적으로 많이 일어나기 때문이다. 탄소섬유 배향에 따른 마찰특성은 마찰 면과 복합재료의 적층 방향이 수직인 경우, 탄소 섬유가 단일 방향으로 배향된 $0/0^{\circ}$의 복합재료가 다방향 배향인 $0/45/90/-45^{\circ}$$0/90^{\circ}$ 복합재료에 비해 상대적으로 뛰어난 마찰특성을 나타내었다. 이는 탄소섬유의 배향 방향에 따라 마찰 면에 접촉하는 탄소섬유의 접촉면적이 변화되고 그 결과, 마찰에 의한 탄소섬유와 에폭시의 debonding 정도가 변화되기 때문이다. 이와는 달리 마찰 면과 적층 방향이 수평인 경우탄소섬유에 가해지는 응력의 종류에 따라 다른 마찰특성을 나타내며 인장응력이 작용하는 $0/90^{\circ}$로 탄소섬유가 배향된 복합재료가 가장 우수한 마찰특성을 갖는다. 마찰면과 탄소섬유 배향에 따라 마찰속도는 마찰계수에 영향을 미치지 못하는 반면 마멸지수와는 비례관계가 있음을 확인할 수 있었다.

  • PDF

Tribological Properties of Carbon/PEEK Composites

  • Yoon, Sung-Won;Kim, Yun-Hae;Lee, Jin-Woo;Kim, Han-Bin;Murakami, Ri-Ichi
    • International Journal of Ocean System Engineering
    • /
    • 제3권3호
    • /
    • pp.142-146
    • /
    • 2013
  • In this study, the effect of Carbon/PEEK composites on the tribological properties has been investigated. Also, its validity has been tested in the capacity of alternative materials of the Ti-based materials used for artificial hip joint. Moreover, this work evaluated the mechanical properties according to the fiber ply orientation, along with the fractured surfaces of the carbon/PEEK composites. The composites with a unidirectional orientation had higher tribological properties than those with a multidirectional orientation. This was caused by the debonding between the carbon fiber and the PEEK, which was proportional to the contact area between the sliding surface and the carbon fiber. The friction test results showed that there were no significant differences in relation to the fiber ply orientation. However, the friction properties of the carbon/PEEK composites were higher than those of the carbon/epoxy composites. In addition, the results showed that a composite that slid in a direction normal to the prepreg lay-up direction had a smaller friction coefficient than one that slid in a direction parallel to the prepreg lay-up direction.

Optimal lay-up of hybrid composite beams, plates and shells using cellular genetic algorithm

  • Rajasekaran, S.;Nalinaa, K.;Greeshma, S.;Poornima, N.S.;Kumar, V. Vinoop
    • Structural Engineering and Mechanics
    • /
    • 제16권5호
    • /
    • pp.557-580
    • /
    • 2003
  • Laminated composite structures find wide range of applications in many branches of technology. They are much suited for weight sensitive structures (like aircraft) where thinner and lighter members made of advanced fiber reinforced composite materials are used. The orientations of fiber direction in layers and number of layers and the thickness of the layers as well as material of composites play a major role in determining the strength and stiffness. Thus the basic design problem is to determine the optimum stacking sequence in terms of laminate thickness, material and fiber orientation. In this paper, a new optimization technique called Cellular Automata (CA) has been combined with Genetic Algorithm (GA) to develop a different search and optimization algorithm, known as Cellular Genetic Algorithm (CGA), which considers the laminate thickness, angle of fiber orientation and the fiber material as discrete variables. This CGA has been successfully applied to obtain the optimal fiber orientation, thickness and material lay-up for multi-layered composite hybrid beams plates and shells subjected to static buckling and dynamic constraints.

A discussion on simple third-order theories and elasticity approaches for flexure of laminated plates

  • Singh, Gajbir;Rao, G. Venkateswara;Iyengar, N.G.R.
    • Structural Engineering and Mechanics
    • /
    • 제3권2호
    • /
    • pp.121-133
    • /
    • 1995
  • It is well known that two-dimensional simplified third-order theories satisfy the layer interface continuity of transverse shear strains, thus these theories violate the continuity of transverse shear stresses when two consecutive layers differ either in fibre orientation or material. The third-order theories considered herein involve four/or five dependent unknowns in the displacement field and satisfy the condition of vanishing of transverse shear stresses at the bounding planes of the plate. The objective of this investigation is to examine (i) the flexural response prediction accuracy of these third-order theories compared to exact elasticity solution (ii) the effect of layer interface continuity conditions on the flexural response. To investigate the effect of layer interface continuity conditions, three-dimensional elasticity solutions are developed by enforcing the continuity of different combinations of transverse stresses and/or strains at the layer interfaces. Three dimensional twenty node solid finite element (having three translational displacements as degrees of freedom) without the imposition of any of the conditions on the transverse stresses and strains is also employed for the flexural analysis of the laminated plates for the purposes of comparison with the above theories. These shear deformation theories and elasticity approaches in terms of accuracy, adequacy and applicability are examined through extensive numerical examples.

경량화용 복합재 튜브의 적층구성이 흡수에너지 특성에 미치는 영향 (Influence of Stacking Sequence Conditions the Absorbed Energy Characteristics of Composite Tubes)

  • 김영남;김지훈;양인영
    • 한국정밀공학회지
    • /
    • 제18권11호
    • /
    • pp.34-41
    • /
    • 2001
  • This study is to investigate the energy absorption characteristics of CFRP(Carbon-Fiber Reinforced Plastics) tubes on static and dynamic tests. Axial static compression tests have been carried out using the static testing machine(Shin-gang buckling testing machine) and dynamic compression tests have been utilized using an vertical crushing testing machine. When such tubes are subjected to crushing loads, the response is complex and depends on the interaction between the different mechanisms that could control the crushing process. The collapse characteristics and energy absorption have been examined for various tubes. Energy absorption of the tubes are increased as changes in the lay-up which may increase the modulus of tubes. The results have been varied significantly as a function of ply orientation and interlaminar number.

  • PDF

탄소섬유/에폭시 복합재료의 층간파괴인성에 미치는 균열진전각도의 영향 (Effect of Crack Propagation Directions on the Interlaminar Fracture Toughness of Carbon/Epoxy Composite Materials)

  • 황진호;황운봉
    • 대한기계학회논문집A
    • /
    • 제23권6호
    • /
    • pp.1026-1038
    • /
    • 1999
  • Interlaminar fracture toughness of carbon/epoxy composite materials has been studied under tensile and flexural loading by the use of width tapered double cantilever beam(WTDCB) and end notched flexure(ENF) specimens. This study has significantly examined the effect of various interfacial ply orientation, ${\alpha}(0^{\circ},\;45^{\circ}\;and\;90^{\circ})$ and crack propagation direction, ${\theta}(0^{\circ},\;15^{\circ},\;30^{\circ}\;and\;45^{\circ})$ in terms of critical strain energy release rate through experiments. Twelve differently layered laminates were investigated. The data reduction for evaluating the fracture energy is based on compliance method and beam theory. Beam theory is used to analyze the effect of crack propagation direction. The geometry and lay-up sequence of specimens are considered various conditions such as skewness parameter, beam volume, and so on. The results show that the fiber bridging occurred due to the non-midplane crack propagation and causes the difference of fracture energy evaluated by both methods. For safer and more reliable composite structures, we obtain the optimal stacking sequence from initial fracture energy in each mode.

복합재료의 고속드릴링 가공시 칩형태에 관한 연구 (A Study on the Chip Shapes Properties of the Fiber Reinforced Plastics by High Speed Drilling Process)

  • 성인식;임세환;김주현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.168-173
    • /
    • 2005
  • Composite material is combined with two or more chemical ingredient and different components. FRP has been widely used for the structure of aircraft, ships, automobiles, sporting goods and other machines because of their high specific strength, high specific stiffness and excellent fatigue strength. Recently, the development of machine tool and cutting tool greatly relies on high speed process to satisfy high precision, high efficient machining, shortened process time to maximize material removal rate (MRR) through high cutting speed and feed speed. The research molded CFRP, GFRP as stacking sequence methods of two direction (orientation angle $0^{\circ}\;and\;0^{\circ}/9^{\circ}$) hand lay-up, drilled molded plates using cemented carbide drill and examined chip shapes, surface roughness properties.

  • PDF