• Title/Summary/Keyword: Laws of Motion

Search Result 88, Processing Time 0.024 seconds

Modeling and Adaptive Motion Tracking Control of Two-Wheeled Welding Mobile Robot (WMR) (용접용 이륜 이동로봇의 모델링 및 적응 추종 제어)

  • Suh, Jin-Ho;Bui, Tring Hieu;Nguyen, Tan Tien;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.786-791
    • /
    • 2003
  • This paper proposes an adaptive control algorithm for nonholonomic mobile robots with unknown parameters and the proposed control method is used in numerical simulations for applying to a practical twowheeled welding mobile robot(WMR). The proposed adaptive controller to track an arbitrary given welding path is designed by using back-stepping technique and is derived for a nonlinear model under the assumption such that the system parameters are partially known. Moreover, the proposed adaptive control system is stable in the sense of Lyapunov stability. Inertia moments of system are considered to be unknown parameters and their values can be estimated simply by using update laws proposed in an adaptive control scheme of this research. The simulation results are provided to show the effectiveness of the accurate tracking capability of the proposed controller for two-wheeled welding mobile robot with a smooth curved reference welding path.

  • PDF

A Robust Adaptive Control of Dual Arm Robot with Eight-Joints Based on DSPs (DSPs 기반 8축 듀얼암 로봇의 견실적응제어)

  • Han, Sung-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1220-1230
    • /
    • 2006
  • In this paper, we propose a flew technique to the design and real-time control of an adaptive controller for robotic manipulator based on digital signal processors. The Texas Instruments DSPs(TMS320C80) chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for dual-arm robotic manipulators. In the proposed scheme, adaptation laws are derived from model reference adaptive control principle based on the improved Lyapunov second method. The proposed adaptive controller consists of an adaptive feed-forward and feedback controller and time-varying auxiliary controller elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for a dual arm robot manipulator with eight joints. joint space and cartesian space.

Pitch-axis Maneuver of UAVs by Adaptive Control Approach (무인항공기의 적응제어 법칙을 이용한 피치 기동 연구)

  • Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1170-1176
    • /
    • 2010
  • This study addresses adaptive control of UAVs(Unmanned Aerial Vehicles) pitch-axis maneuver. The MRAC(Model Referenced Adaptive Control) approach is employed to accommodate uncertainties which are introduced by feedback linearization of pitch attitude control by elevator input. The model uncertainty is handled by adaptation laws which update model parameters while the UAV is under control by the feedback control law. Steady-state pitch attitude achieved by the stabilizing control law is derived to provide insight on the closed-loop behavior of the controlled system. The proposed idea is free of linearization, gain-scheduling procedures, so that one can design high maneuverability of UAVs for pitching motion in the presence of significant model uncertainty.

A Study on Accident Recognition Using 6-Axis IMU Sensor Module (6축 IMU 센서 모듈을 이용한 사고인지에 관한 연구)

  • Woo, Joo;Jo, So-Hyeon;Kim, Dae-Won;Kim, Gwan-Hyung;Byun, Gi-Sig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.91-92
    • /
    • 2018
  • As we begin to develop into an aging society, a lot of safety issues are emerging recently. Also, laws and products related to the safety and welfare of the elderly are being released. Therefore, this paper investigated the safety of the elderly. In this paper, we propose a system that can detect motion such as falling or slipping of elderly people by using gyro sensor and accelerometer to solve these factors.

  • PDF

Hygrothermal Fracture Analysis in Dissimilar Materials

  • Ahn, Kook-Chan;Lee, Tae-Hwan;Bae, Kang-Yul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.65-72
    • /
    • 2001
  • This paper demonstrates an explicit-implicit, finite element analysis for linear as well as nonlinear hygrothermal stress problems. Additional features, such as moisture diffusion equation, crack element and virtual crack extension(VCE) method for evaluating J-integral are implemented in this program. The Linear Elastic Fracture Mechanics(LEFM) Theory is employed to estimate the crack driving force under the transient condition for an existing crack. Pores in materials are assumed to be saturated with moisture in the liquid form at the room temperature, which may vaporize as the temperature increases. The vaporization effects on the crack driving force are also studied. The ideal gas equation is employed to estimate the thermodynamic pressure due to vaporization at each time step after solving basic nodal values. A set of field equations governing the time dependent response of porous media are derived from balance laws based on the mixture theory. Darcy's law is assumed for the fluid flow through the porous media. Perzyna's viscoplastic model incorporating the Von-Mises yield criterion are implemented. The Green-Naghdi stress rate is used for the invariant of stress tensor under superposed rigid body motion. Isotropic elements are used for the spatial discretization and an iterative scheme based on the full Newton-Raphson method is used for solving the nonlinear governing equations.

  • PDF

Design of a real time adaptive controller for industrial robot using TMS320C31 chip (TMS320C31칩을 사용한 산엽용 로보트의 실시간 적응 제어기 설계)

  • Han, S.H.;Kim, Y.T.;Lee, M.H.;Kim, S.K.;Kim, J.O.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.94-104
    • /
    • 1996
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C31) for robotic manpulators to achieve accurate trajectory tracking by the joint angles Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed contorl scheme, adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaptive feedforward controller, feedback controller, and PID type time varying auxillary control elements. The proposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Morever, this scheme does not require an accurate dynamic modeling nor values of manpipulator parameters and payload. Performance of the adaptive controller is illustated by simulation and experimental results for a SCARA robot.

  • PDF

An Adaptive Controller Design for Inderstrial Robotic Maniqulator Using TMS320C5X Chip (TMS320C5X 칩을 사용한 산업용 로보트 매니퓰레이터의 적응제어기 설계)

  • Bae, G. H.;Wang, H. H.;Han, S. H.;Lee, M. C.;Son, G.;Lee, J. M.;Lee, M. H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.478-482
    • /
    • 1996
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C50) for robotic manipulators to achieve trajectorytracking angles. Digital signal processors are used in implementing real time adaptive control algorithms to provide motion for robotic manipulators. In the proposed scheme, adapation laws are derived from the improved second stability analysis based on the indirect adaptive control theory.l The proposed control scheme is simple in structure, fast in computation, an suitable for implementation of real-time control. Moreover, this scheme does not requre an accurate dynamic modeling, nor values of manipulator paramenters and payload Performance of the adaptive controller is illustrated by exeperimental results for a SCARA robot.

  • PDF

Cooperative Control of Multiple Unmanned Aircraft for Standoff Tracking of a Moving Target (지상 목표물 추적을 위한 다수 무인항공기의 협력제어)

  • Yoon, Seung-Ho;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.114-120
    • /
    • 2011
  • This paper presents a cooperative standoff tracking of a moving target using multiple unmanned aircraft. To provide guidance commands, vector fields are designed utilizing the Lyapunov stability theory. A roll angle command is generated to keep a constant distance from the target in a circular motion. A speed command and a heading angle command are designed to keep a constant phase angle with respect to the front aircraft and to prevent a collision between aircraft. Numerical simulation is performed to verify the tracking and collision performance of the proposed control laws.

Leibniz-Clark Controversy on the Nature of Space and Hole Argument (공간의 본성에 대한 라이프니츠-클라크 논쟁과 홀 논변)

  • Yang, Kyoung-eun
    • Journal of Korean Philosophical Society
    • /
    • v.144
    • /
    • pp.235-256
    • /
    • 2017
  • This essay considers Leibniz-Clark correspondence on the nature of space and hole argument. The ontology of space had been debated under the name of substantivalism-relationism controversy. The debates between the two parties are concerned with the nature of existence of parts of space-time. Substantivalism claims that the point of space-time has existence analogous to that of material substance. Relationism argues that space-time should be understood as the framework of possible spatio-temporal relations between bodies. Although these two approaches attempt to respect theoretical context, it seems that the problems of these two interpretive schemes stems from the lack of understanding of the structure of space-time theories, especially how space-time is connected with the laws of motion. In order to appreciate the substance-relation controversy without deviating from the context of space-time theories, it is necessary then to capture how space-time theories are constituted. This essay offers the clear connection of ontology of space-time with present practices of theoretical physicists.

A novel hyperbolic plate theory including stretching effect for free vibration analysis of advanced composite plates in thermal environments

  • Elmascri, Setti;Bessaim, Aicha;Taleb, Ouahiba;Houari, Mohammed Sid Ahmed;Mohamed, Sekkal;Bernard, Fabrice;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.193-209
    • /
    • 2020
  • This paper presents a new hyperbolic shear deformation plate theory including the stretching effect for free vibration of the simply supported functionally graded plates in thermal environments. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factors. This theory has only five unknowns, which is even less than the other shear and normal deformation theories. The present one has a new displacement field which introduces undetermined integral variables. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume power laws of the constituents. The equation of motion of the vibrated plate obtained via the classical Hamilton's principle and solved using Navier's steps. The accuracy of the proposed solution is checked by comparing the present results with those available in existing literature. The effects of the temperature field, volume fraction index of functionally graded material, side-to-thickness ratio on free vibration responses of the functionally graded plates are investigated. It can be concluded that the present theory is not only accurate but also simple in predicting the natural frequencies of functionally graded plates with stretching effect in thermal environments.