• Title/Summary/Keyword: Law of Large numbers

Search Result 158, Processing Time 0.027 seconds

STRONG LAW OF LARGE NUMBERS FOR ASYMPTOTICALLY NEGATIVE DEPENDENT RANDOM VARIABLES WITH APPLICATIONS

  • Kim, Hyun-Chull
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.201-210
    • /
    • 2011
  • In this paper, we obtain the H$\`{a}$jeck-R$\`{e}$nyi type inequality and the strong law of large numbers for asymptotically linear negative quadrant dependent random variables by using this inequality. We also give the strong law of large numbers for the linear process under asymptotically linear negative quadrant dependence assumption.

A NOTE ON THE STRONG LAW OF LARGE NUMBERS FOR WEIGHTED SUMS OF NEGATIVELY DEPENDENT RANDOM VARIABLES

  • Lee, S.W.;Kim, T.S.;Kim, H.C.
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.4
    • /
    • pp.855-863
    • /
    • 1998
  • Some conditions on the strong law of large numbers for weighted sums of negative quadrant dependent random variables are studied. The almost sure convergence of weighted sums of negatively associated random variables is also established, and then it is utilized to obtain strong laws of large numbers for weighted averages of negatively associated random variables.

  • PDF

A UNIFORM STRONG LAW OF LARGE NUMBERS FOR PARTIAL SUM PROCESSES OF FUZZY RANDOM SETS

  • Kwon, Joong-Sung;Shim, Hong-Tae
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.3_4
    • /
    • pp.647-653
    • /
    • 2012
  • In this paper, we consider fuzzy random sets as (measurable) mappings from a probability space into the set of fuzzy sets and prove a uniform strong law of large numbers for sequences of independent and identically distributed fuzzy random sets. Our results generalize those of Bass and Pyke(1984)and Jang and Kwon(1998).

A law of large numbers for maxima in $M/M/infty$ queues and INAR(1) processes

  • Park, Yoo-Sung;Kim, Kee-Young;Jhun, Myoung-Shic
    • Journal of the Korean Statistical Society
    • /
    • v.23 no.2
    • /
    • pp.483-498
    • /
    • 1994
  • Suppose that a stationary process ${X_t}$ has a marginal distribution whose support consists of sufficiently large integers. We are concerned with some analogous law of large numbers for such distribution function F. In particular, we determine a weak law of large numbers for maximum queueing length in $M/M\infty$ system. We also present a limiting behavior for the maxima based on AR(1) process with binomial thining and poisson marginals (INAR(1)) introduced by E. Mckenzie. It turns out that the result of AR(1) process is the same as that of $M/M/\infty$ queueing process in limit when we observe the queues at regularly spaced intervals of time.

  • PDF