• Title/Summary/Keyword: Laves

Search Result 64, Processing Time 0.023 seconds

Development of AB2-Type Zr-Mn-Ni Hydrogen-Storage Alloys for Ni-MH Secondary Battery (Ni-MH 2차전지용 AB2계 Zr-Mn-Ni 수소저장합금의 개발)

  • Kwon, IkHyun;Ahn, DongSu;Park, HyeRyoung;Song, MyoungYoup
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.1
    • /
    • pp.29-38
    • /
    • 2001
  • The alloys $ZrMn_2Ni_x$ (x=0.0, 0.3, 0.6, 0.9 and 1.2) as the alloys of Zr-Mn-Ni three component system were prepared and their hydrogen-storage properties and their electrochemical properties were investigated. The C14 Laves phase formed in all the alloys $ZrMn_2Ni_x$. Among these alloys $ZrMn_2Ni_{0.6}$ was activated relatively easily(after about 11 charge-discharge cycles), and had the largest discharge capacity(max. 45mAh/g). For all the alloys Zr was dissolved most easily into the 6M KOH solution. More Mn and Ni were dissolved from the $ZrMn_2Ni_{0.6}$ alloy than from the other alloys. Due to the active charge and discharge of the $ZrMn_2Ni_{0.6}$ alloys, related to the easier activation and the larger discharge capacity, Zr, Mn and Ni in this alloy were considered to be dissolved more easily into the 6M KOH solution, compared with the other alloys.

  • PDF

A Study on the Cracking Behavior in the Welds of Ni-Cr-Fe and Ni-Fe-Cr-Mo Alloys Part I : Solidification Cracking in the Fusion Zone (Ni-Cr-Fe 및 Ni-Fe-Cr-Mo계 합금의 용접부 균열특성에 관한 연구 Part I : 용착금속의 응고균열)

  • 김희봉;이창희
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.78-89
    • /
    • 1997
  • This study has evaluated the weld metal solidification cracking behavior of several Ni base superalloys (Incoloy 825, Inconel 718 and Inconel 600). Austenitic stainless steels(304, 310S) were also included for comparison. In addition, a possible mechanism of solidification cracking in the fusion zone was suggested based on the extensive microstructural examinations with SEM, EDAX, TEM, SADP and AEM. The solidification cracking resistance of Ni base superalloys was found to be far inferior to that of austenitic stainless steels. The solidification cracking of Incoloy 825 and Inconel 718 was believel to be closely related with the Laves-austenite (Ti rich in 825 and Nb rich in 718) and MC-austenite eutectic phases formed along the grain boundaries during solidification. Cracking in Inconel 600 was always found along the grain boundaries which were enriched with Ti and P. Further, solidifidcation cracking resistance was dependent not only upon the type of love melting phases but also on the amount of the phases along the solidification grain boundaries.

  • PDF

A study on the activation characteristics of multi-phase Zr-based hydrogen storage alloy for Ni-MH rechargeable battery (Ni-MH 2차전지용 다상의 Zr계 수소저장합금 전극의 활성화 특성에 관한 연구)

  • Lee, Ho;Jang, Kuk-Jin;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.8 no.4
    • /
    • pp.161-171
    • /
    • 1997
  • $AB_2$ type Zr-based Laves phase alloys have been studied for potential application as negative electrode in Ni/MH batteries. However, They have a serious disadvantage of poor activation behavior in KOH solution. In this work, a new method of alloy design method was tried for improving Zr-based alloy activation. this method has focused on phase controlling to make multi-phase microstructure. In the case of multi-phase Zr-V-Mn-Ni shows good performance in activation, but activation mechanism has not been known. So, we were in search of elucidating this mechanism, Using morphological and electrochemical analysis, we could find that surface morphology and electocatalytic activity of the alloy change during immersion in KOH solution. V-rich second phases are selectively corroded and dissolved and then become Ni-rich phases. Resulting from these surface reaction in KOH solution, self-hydrogen charging occurs through Ni-rich phase. However, the alloy has poor cyclic durability because of such a corrosion mechanism. Therefore, finally we developed durable alloys by substitution of other alloying element.

  • PDF

Discovery of Giant Magnetostriction in Amorphous RFe$_2$B (R = Sm, Tb) Alloys

  • Kim, Jai-Young
    • Journal of Magnetics
    • /
    • v.1 no.2
    • /
    • pp.64-68
    • /
    • 1996
  • Compared with the conventional magnetostriction in Ni alloys which are in the order of several tens ppm (Parts Per Million =10-6), RFe$_2$(R = rare earth element) Laves Phase intermetallic compounds show large saturation magnetostriction in the range of a few thousands ppm. However, the large external magnetic field necessary to obtain saturatio magnetostriction has due to large magnetocrystalline anisotropy energy restrained the applicationof magnetostriction materials in RFe$_2$intermetallic compounds. As a result of its solution, the largest published value of effective giant magnetostriction in a low external magnetic field (less than a few hundred Oe) is reported in this paper by means of amorphisation of RFe$_2$intermetallic compounds with the addition of boron, as a half metal. For the amorphous (SmFe$_2$)0.97 B0.03 alloys, the effective magnetostriction of -545 and -610 $\times$ 10-6 is obtained at 400 and 1,000 Ie, respectively. Moreover, the effective magnetostriction of 590 and 630$\times$10-6 in the amorphous (TbFe$_2$)0.98 B0.02 alloys is also found at 400 and 1,000 Oe, respectively. This result will provide a clue to understanding the effect of half metal on anomalous increase of the effective giant magnetostriction and attract the great attention for magnetostriction applications.

  • PDF

The Effect of Heat Treatment on the Microstructural Evolution and Mechanical Properties of Co-base Materials (CO-기 합금의 열처리에 의한 미세조직 및 기계적 특성변화에 관한 연구)

  • Kim, Gi-Yeob;Jung, Byong-Ho;Ahn, Yong-Sik
    • Journal of Power System Engineering
    • /
    • v.5 no.2
    • /
    • pp.63-70
    • /
    • 2001
  • To obtain the optimal condition of heat treatment of wear-resistant alloy, hardness and Charpy V-notch test have been performed with Co-based Stellite No.4, No.6 and Tribaloy 800 alloys, following by heat treatment at the various conditions. Heat treatment at $1250^{\circ}C$ for 1 hours caused the as-casted Tribaloy 800 with FCC crystal structure to transform to HCP structure and lamellar eutectic structure was disappeared, which did not influence on the hardness. Aging at $800^{\circ}C$ for 20 hours, following by $1250^{\circ}C$ for 2 hours heat treatment has enhanced hardness significantly, which is due to the precipitation of large amounts of Laves-phase. The hardness of Stellite alloys was increased by the aging at $800^{\circ}C$ to 5 hours, and was nearly constant by the aging over 5 hours. The toughness of Stellite alloys was a few influenced by the aging treatment.

  • PDF

Microstructures and hardness of model niobium-based chromium-rich cast alloys

  • Berthod, Patrice;Ritouet-Leglise, Melissa
    • Advances in materials Research
    • /
    • v.7 no.1
    • /
    • pp.17-28
    • /
    • 2018
  • Niobium is a candidate base for new alloys devoted to applications at especially elevated temperatures. Elaborating and shaping niobium-based alloys by conventional foundry may lead to mechanically interesting microstructures. In this work a series of charges constituted of pure elements were subjected to high frequency induction melting in cold crucible to try obtaining cast highly refractory Nb-xCr and Nb-xCr-0.4 wt.%Calloys(x=27, 34 and 37 wt.%). Melting and solidification were successfully achieved. The as-cast microstructures of the obtained alloys were characterized by electron microscopy and X-ray diffraction and their hardness were specified by Vickers macro-indentation. The obtained as-cast microstructures are composed of a body centered cubic (bcc) niobium dendritic matrix and of an interdendritic eutectic compound involving the bcc Nb phase and a $NbCr_2$ Laves phase. The obtained alloys are hard to cut and particularly brittle at room temperature. Hardness is of a high level (higher than 600Hv) and is directly driven by the chromium content or the amount of {bcc Nb - $NbCr_2$} eutectic compound. Adding 0.4 wt.% of carbon did not lead to carbides but tends to increase hardness.

The Operating Characteristics of the Compressor-Driven Metal Hydride Heat Pump System (Compressor-Driven Metal Hydride Heat Pump System의 동작특성에 관한 연구)

  • Park, Jeong-Gun;Seo, Chan-Yeol;Lee, Paul S.;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.3
    • /
    • pp.157-167
    • /
    • 2001
  • Metal hydride올 이용하는 냉방시스템은 다른 냉방시스템과 비교하여 환경 친화적이며 Clean technology라는 장점이 있다. 이러한 시스템 중에 최근에 많은 연구가 진행중인 Electric Compressor로 수소의 이동이 제어되는 Compressor-Driven Metal Hydride Heat Pump(CDMHHP)은 폐열원의 온도에 의해 제어되는 시스템에 비하여 cooling power가 크다는 장점과 함께 단속적인 냉방이 아닌 2개의 함금쌍으로도 연속적인 냉방이 가능하다는 장점이 있다. 본 연구에서는 이러한 CDMHHP system의 동작특성을 분석하기 위해서 2개의 반응관에 고용량과 solping 특성이 매우 우수한 $Zr_{0.9}Ti_{0.1}Cr_{0.55}Fe_{1.45}$ Laves phase metal hydride을 장입하여 시스템을 구성하고 cycle time, surrounding temperature, 장입 수소량, 수소이동량등의 동작조건을 최적화 한 결과 최대 cooling power가 251 kcal/kg-alloyh의 우수한 성능을 보였다.

  • PDF

The Effects of Amorphization on Hydrogen Absorption Properties of Zr57V36Fe7 Getter alloy (게터용 Zr57V36Fe7 합금의 수소 흡수특성에 미치는 비정질화의 영향)

  • Park Je-Shin;Suh Chang-Youl;Kim Won-Baek
    • Korean Journal of Materials Research
    • /
    • v.15 no.12
    • /
    • pp.802-808
    • /
    • 2005
  • The hydrogen sorption speeds of $Zr_{57}V_{36}Fe_7$ amorphous alloy and its crystallized alloys were evaluated at room temperature $Zr_{57}V_{36}Fe_7$ amorphous alloy was prepared by ball milling. The amorphous alloy was crystallized through two stages. Initially, $\alpha-Zr$ solid solution was appeared from the amorphous phase. Two cubic Laves compounds were precipitated afterwards from the remained amorphous and from excessively saturated solid solution at higher temperature. The hydrogen sorption speed of the partially crystallized alloy was higher than that of amorphous. The enhanced sorption speed of partially crystallized alloy was explained in terms of surface oxygen stability which has been known to retard the activation of amorphous alloys. The retardation could be reduce by crystallization process resulting in the observed increase in sorption property.

Small Punch Creep Evaluation and Microstructure Analysis in Aged P122 Steel (P122강 열화재의 소형펀치 크리프 평가 및 미세조직 분석)

  • Kim, Bum-Joon;Kim, Moon-K;Dung, Hoang Tien;Lim, Byeong-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.19-27
    • /
    • 2010
  • This paper investigates the influence of aging time on creep properties via a small punch creep test and evaluates the microstructural change of P122 steel at $600^{\circ}C$. The area fraction of precipitates was quantitatively analyzed to identify the relationship between the creep rupture life and precipitates was coarsening behavior of precipitates along the grain boundaries was also investigated for various aging times. It is found that this coarsening behavior led to a loss of solution hardening and rewulte in a hardness drop and a reduction of creep life.

High-Temperature Oxidation Kinetics and Scales Formed on P122 Steel Welds in Air (P122강 용접부의 대기중 고온산화 부식속도와 스케일 분석)

  • Bak, Sang-Hwan;Lee, Dong-Bok
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.699-707
    • /
    • 2011
  • P122 steel, with a composition of Fe-10.57%Cr-1.79%W-0.96Cu-0.59Mn was arc-welded and oxidized between $600^{\circ}C$ and $800^{\circ}C$ in air for up to 6 months. The oxidation rates increased in the order of the base metal, weld metal, and heat-affected zone (HAZ), depending on the microstructure. The scale morphologies of the base metal, weld metal, and HAZ were similar because it was determined mainly by the alloy chemistry. The scale consisted primarily of a thin $Fe_2O_3$ layer at $600^{\circ}C$ and $700^{\circ}C$ and an outer $Fe_2O_3$ layer and an inner ($Fe_2O_3$, $FeCr_2O_4$)-mixed layer at $800^{\circ}C$. The microstructural changes resulting from heating between $600^{\circ}C$ and $800^{\circ}C$ coarsened the carbide precipitates, secondary Laves phases, and subgrain boundaries in the matrix, resulting in softening of the base metal, weld metal, and HAZ.