• Title/Summary/Keyword: Lattice simulation

Search Result 340, Processing Time 0.027 seconds

Analysis of Filtration Performance by Brownian Dynamics (Brownian Dynamics 를 이용한 입자 포집 과정 및 여과 성능 해석)

  • Bang, Jong-Geun;Yoon, Yoong-Sup
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.811-819
    • /
    • 2009
  • In the present study, deposition of discrete and small particles on a filter fiber was simulated by stochastic method. Trajectory of each particle was numerically solved by Langevin equation. And Lattice Boltzmann method (LBM) was used to solve flow field around the filter collector for considering complex shape of deposit layer. Interaction between the flow field and the deposit layer was obtained from a converged solution from an inner-loop calculation. Simulation method is properly validated with filtration theory and collection efficiency due to different filtration parameters are examined and discussed. Morphology of deposit layer and its evolution was visualized in terms of the particle size. The particle loaded effect on collection efficiency was also discussed.

Potential Based Prediction Methods of Aerodynamic and Wake Simulation of Wind Turbine Blade (포텐셜 유동을 기반으로 한 풍력 터빈 블레이드의 공력 해석 및 후류 예측 기법에 관한 연구)

  • Kirn, Ho-Geon;Shin, Hyung-Ki;Lee, Soo-Gab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.414-419
    • /
    • 2007
  • This paper describes the prediction of aerodynamic performance and wake of HAWT in normal and yawed flow operation using potential based methods. In order to analyze aerodynamic performance of wind turbine WINFAS program is used, which is based on VLM(Vortex Lattice Method) and CVC(Constant vorticity contour) Free wake model. Some problems of CVC vortex filament method are investigated arid to improve these problems vortex ring wake are introduced in behalf of CVC vortex filament. The prediction results using the vortex lattice wake are compared to experimental data.

  • PDF

Numerical simulation of unsteady propeller/rudder interaction

  • He, Lei;Kinnas, Spyros A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.6
    • /
    • pp.677-692
    • /
    • 2017
  • A numerical approach based on a potential flow method is developed to simulate the unsteady interaction between propeller and rudder. In this approach, a panel method is used to solve the flow around the rudder and a vortex lattice method is used to solve the flow around the propeller, respectively. An iterative procedure is adopted to solve the interaction between propeller and rudder. The effects of one component on the other are evaluated by using induced velocities due to the other component at every time step. A fully unsteady wake alignment algorithm is implemented into the vortex lattice method to simulate the unsteady propeller flow. The Rosenhead-Moore core model is employed during the wake alignment procedure to avoid the singularities and instability. The Lamb-Oseen vortex model is adopted in the present method to decay the vortex strength around the rudder and to eliminate unrealistically high induced velocity. The present methods are applied to predict the performance of a cavitating horn-type rudder in the presence of a 6-bladed propeller. The predicted cavity patterns compare well with those observed from the experiments.

NUMERICAL STUDY ON ELECTROPHORETIC MOTION OF A BIO-POLYMER THROUGH A NANO-PORE (나노 세공을 통한 비드 체인의 전기영동에 관한 수치해석적 연구)

  • Alapati, Suresh;Suh, Yong-Kweon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.575-580
    • /
    • 2010
  • In this work, the electrophoretic motion of dsDNA molecule represented by a polymer through an artificial nano-pore in a membrane is simulated using the numerical method combining the lattice Boltzmann and Langevin molecular dynamic method. The polymer motion is represented by Langevin molecular dynamics technique while the fluid flow is taken into account by fluctuating lattice-Boltzmann method. The hydrodynamic interactions between the polymer and solvent in a confined space with a membrane having a hole are considered explicitly through the frictional and the random forces. The electric field intensity over the space is obtained from a finite difference method. Initially, the polymer is placed at one side of the space, and an electric field is applied to drive the polymer to the other side of the space through the nano-pore. In future, we plan to study the effect of the polymer size and the electric field on the electrophoretic velocity.

  • PDF

The Embedded Atom Method Analysis of the Nickel (Nickel의 Embedded Atom Method 해석)

  • 정영관;김경훈;이근진;김종수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.572-575
    • /
    • 1997
  • The embedded atom method based on density functional theory was developed as a new means for calculating ground state properties of realistic metal system by Murray S. Daw, Stephen M. Foiles and Michael I. Baskes. In the paper, we had corrected constitutive formulae and parameters on the nickel for the purpose of doing Embedded Atom Method analysis. And then we have computed the properties of the nickel on the fundamental scale of the atomic structure. In result, simulated ground state properties, such as the lattice constant, elastics constants and sublimation energy, show good agreement with Daw's simulation data and with experimental data.

  • PDF

Analysis of Magnitude and Rate-of-rise of VFTO in 550 kV GIS using EMTP-RV

  • Seo, Hun-Chul;Jang, Won-Hyeok;Kim, Chul-Hwan;Chung, Young-Hwan;Lee, Dong-Su;Rhee, Sang-Bong
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • Very Fast Transients (VFT) originate mainly from disconnector switching operations in Gas Insulated Substations (GIS). In order to determine the rate-of-rise of Very Fast Transient Overvoltage (VFTO) in a 550 kV GIS, simulations are carried out using EMTP-RV. Each component of the GIS is modeled by distributed line model and lumped model based on equivalent circuits. The various switching conditions according to closing point-on-wave and trapped charge are simulated, and the results are analyzed. Also, the analysis of travelling wave using a lattice diagram is conducted to verify the simulation results.

Influence of a rear spoiler on a squareback car wake (리어 스포일러 장착에 의한 자동차 후류의 변화 연구)

  • Baek, Seung-Jin;Oh, Min-Soo;Lee, Jung-Ho;Kim, Moo-Sang
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1825-1829
    • /
    • 2004
  • A numerical simulation was performed of flow behind a squareback car with a rear spoiler. Influence of the rear spoiler on drag force has been studied. A lattice Boltzmann method was utilized to portray the unsteady aerodynamics of wake flows. The pressure distributions were employed to examine the vortex formation mode against the rear spoiler. It was found that the separation flow at roof end and c-pillar makes three dimensional vortex structures and the rear spoiler increases pressure on the rear glass surface.

  • PDF

Local Structure Invariant Potential for InxGa1-xAs Semiconductor Alloys

  • Sim, Eun-Ji;Han, Min-Woo;Beckers, Joost;De Leeuw, Simon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.857-862
    • /
    • 2009
  • We model lattice-mismatched group III-V semiconductor $In_{x}Ga_{1-x}$ alloys with the three-parameter anharmonic Kirkwood-Keating potential, which includes realistic distortion effect by introducing anharmonicity. Although the potential parameters were determined based on optical properties of the binary parent alloys InAs and GaAs, simulated dielectric functions, reflectance, and Raman spectra of alloys agree excellently with experimental data for any arbitrary atomic composition. For a wide range of atomic composition, InAs- and GaAs-bond retain their respective properties of binary parent crystals despite lattice and charge mismatch. It implies that use of the anharmonic Kirkwood-Keating potential may provide an optimal model system to investigate diverse and unique optical properties of quantum dot heterostructures by circumventing potential parameter searches for particular local structures.

Investigations on the Chain Conformation of Weakly Charged Polyelectrolyte in Solvents by Using Efficient Hybrid Molecular Simulations

  • Chun, Myung-Suk;Lee, Hyun-Su
    • Macromolecular Research
    • /
    • v.10 no.6
    • /
    • pp.297-303
    • /
    • 2002
  • We have investigated the microstructural properties of a weakly charged polyelectrolyte modeled with both Hookean spring and Debye-Huckel potential, by employing a novel hybrid scheme of molecular dynamics (MD) and Monte Carlo (MC) simulations. Although the off-lattice pivot step facilitates the earlier computations stage, it gives rise to oscillations and hinders the stable equilibrium state. In order to overcome this problem, we adopt the MC off-lattice pivot step in early stage only, and then switch the computation to a pure MD step. The result shows that the computational speed-up compared to the previous method is entirely above 10 to 50, without loss of the accuracy. We examined the conformations of polyelectrolyte in solvents in terms of the end-to-end distance, radius of gyration, and structure factor with variations of the screening effects of solvent and the monomer charges. The emphasis can favorably be given on the elongation behavior of a polyelectrolyte chain, with observing the simultaneous snapshots.

Experimental and Numerical Study on the Binary Fluid Flows in a Micro Channel (마이크로 채널 내의 이상유동에 대한 실험 및 수치해석적 연구)

  • Park, Jae-Hyoun;Heo, Hyeung-Seok;Suh, Young-Kweon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.86-91
    • /
    • 2006
  • In this parer, we present the bubble forming and motion in the micro channel by using the two-dimensional numerical computation and experiment. In the numerical computation, The Lattice Boltzmann method(LBM) and free-energy model is used to treat the interfacial force and deformation of binary fluid system, drawn in to a micro channel and a numerical simulation is carried out by using the parallel computation method. The urn in this investigation is to examine the applicability of LBM to numerical analysis and experimental method of binary fluid separation and motion in the micro channel.

  • PDF