• Title/Summary/Keyword: Lattice simulation

Search Result 340, Processing Time 0.027 seconds

Numerical Study on Flow over Moving Circular Cylinder Near the Wall Using Immersed Boundary Lattice Boltzmann Method (가상경계 격자볼쯔만법을 이용한 벽면에 근접하여 이동하는 실린더주위의 유동해석)

  • Kim, Hyung-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.924-930
    • /
    • 2008
  • Immersed boundary method (IBM) is the most effective method to overcome the disadvantage of LBM (Lattice Boltzmann Method) related to the limitation of the grid shape. IBM also make LBM possible to simulate flow over complex shape of obstacle without any treatment on the curved boundary. In the research, IBLBM was used to perform LBM simulation of a flow over a moving circular cylinder to determine the flow feature and aerodynamics characteristic of the cylinder. To ascertain the applicability of IBLBM on the moving obstacle near the wall, it was first simulated for the case of the flow over a fixed circular cylinder in a channel and the results were compared against the solution of moving cylinder in the channel using IBLBM. The simulations were performed in a moderate range of Reynolds number at each moving cylinder to identify the flow feature and aerodynamic characteristics of circular cylinder in a channel. The drag and lift coefficients of the cylinder were calculated from the simulation results. We have numerically confirmed that the critical Reynolds number for vortex shedding is Re=50 and the result is the same as the case of fixed cylinder. As the cylinder approaching to a wall (${\gamma}<2.5$), the 2nd vortex is developed by interacting with the wall boundary-layer vorticity. When the cylinder is very closed to the wall, ${\gamma}<0.6$, the cylinder acts like blockage to block the flow between the cylinder and wall so that the vortex developed on the upper cylinder elongated and time averaged lifting and drag coefficients abruptly increase.

Moving particle simulation for a simplified permeability model of pervious concrete

  • Kamalova, Zilola;Hatanaka, Shigemitsu
    • Computers and Concrete
    • /
    • v.24 no.6
    • /
    • pp.571-578
    • /
    • 2019
  • This study aimed to investigate the permeable nature of pervious concretes (PC) through the moving particle simulation (MPS) method. In the simulation, the complex structure of a pervious concrete was virtually demonstrated as a lattice model (LM) of spherical beads, where the test of permeability was conducted. Results of the simulation were compared with the experimental ones for validation. As a result, MPS results showed the permeability index of the LM as almost twice as big as the actual PCs. A proposed virtual model was created to prevent the stuck of water flow in the MPS simulation of PC or LM. Successful simulation results were demonstrated with the model.

A Novel Equivalent Wiener-Hopf Equation with TDL coefficient in Lattice Structure

  • Cho, Ju-Phil;Ahn, Bong-Man;Hwang, Jee-Won
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.500-504
    • /
    • 2011
  • In this paper, we propose an equivalent Wiener-Hopf equation. The proposed algorithm can obtain the weight vector of a TDL(tapped-delay-line) filter and the error simultaneously if the inputs are orthogonal to each other. The equivalent Wiener-Hopf equation was analyzed theoretically based on the MMSE(minimum mean square error) method. The results present that the proposed algorithm is equivalent to original Wiener-Hopf equation. The new algorithm was applied into the identification of an unknown system for evaluating the performance of the proposed method. We compared the Wiener-Hopf solution with the equivalent Wiener-Hopf solution. The simulation results were similar to those obtained in the theoretical analysis. In conclusion, our method can find the coefficient of the TDL (tapped-delay-line) filter where a lattice filter is used, and also when the process of Gram-Schmidt orthogonalization is used. Furthermore, a new cost function is suggested which may facilitate research in the adaptive signal processing area.

SER Analysis of Multi-Way Relay Networks with M-QAM Modulation in the Presence of Imperfect Channel Estimation

  • Islam, Shama N.;Durrani, Salman;Sadeghi, Parastoo
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.677-687
    • /
    • 2016
  • Multi-way relay networks (MWRNs) allow multiple users to exchange information with each other through a single relay terminal. MWRNs are often incorporated with capacity achieving lattice codes to enable the benefits of high-rate signal constellations to be extracted. In this paper, we analytically characterize the symbol error rate (SER) performance of a functional decode and forward (FDF) MWRN in the presence of channel estimation errors. Considering M-ary quadrature amplitude modulation (QAM) with square constellations as an important special case of lattice codes, we obtain asymptotic expressions for the average SER for a user in FDF MWRN. The accuracy of the analysis at high signal-to-noise ratio is validated by comparison with the simulation results. The analysis shows that when a user decodes other users with better channel conditions than itself, the decoding user experiences better error performance. The analytical results allow system designers to accurately assess the non-trivial impact of channel estimation errors and the users' channel conditions on the SER performance of a FDF MWRN with M-QAM modulation.

Numerical Simulation of Edge Tone by Finite Difference Lattice Boltzmann Model with Internal Degree of Freedom (내부자유도를 갖는 차분래티스볼츠만 모델에 의한 에지톤의 수치계산)

  • Kang Ho-Keun;Kim Eun-Ra;Oh Se-Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.929-937
    • /
    • 2005
  • A lattice BGK model based on a finite difference scheme with an internal degree of freedom is employed and it is shown that a diatomic 9as such as air is successfully simulated In a weak compressive wane problem and Coutte flow, the validity and characteristics of the applied model are examined. With the model. furthermore. we present a 2-dimensional edge tones to predict the frequency characteristics of discrete oscillations of a jet-edge feedback cycle by the FDLB model (I.D.F FDLBM) in which any specific heat ratio $\gamma$ can be chosen freely. The jet is chosen long enough in order to guaranteed the Parabolic velocity profile of a jet at the outlet. and the edges have of an angle of $\alpha$=$23^{0}$ and $20^{0}$. A sinuous instability wane with real frequency resulting from Periodic oscillation of the jet around the edge is propagated on the upper and lower of wedge.

Modeling and Control of Welding Mobile Robot for the Tracking of Lattice Type Welding Seam (격자형 용접선 추적을 위한 용접 이동로봇의 모델링 및 제어)

  • Lee, Gun-You;Suh, Jin-Ho;Oh, Myung-Suk;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.923-928
    • /
    • 2003
  • This paper presents the motion control of a mobile robot with arc sensor for lattice type welding. Its dynamic equation and motion control method for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and precise target line even though the robot is driven along a straight line or comer. The mobile robot is modeled based on Lagrange equation under nonholonomic constraints and the model is represented in state space form. The motion control of the mobile robot is separated into three driving motions of straight locomotion, turning locomotion and torch slider controls. For the torch slider control, the proportional integral derivative (PID) control method is used. For the straight locomotion, a concept of decoupling method between input and output is adopted and for the turning locomotion, the turning speed is controlled according to the angular velocity value at each point of the comer with range of $90^{\circ}$ constrained to the welding speed. The proposed control methods are proved through simulation results and the results have proved that the mobile robot has enough ability to apply the lattice type welding line.

  • PDF

Structural Layout Design for Concrete Structures Based on the Repeated Control Method by Using Micro Lattice Truss Model (마이크로 격자트러스모델을 이용한 반복강성제어법에 의한 콘크리트 구조형태의 최적화)

  • Choi, Ik-Chang;Ario, Ichiro
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.705-712
    • /
    • 2008
  • This study carried out simulation for structural layout design for concrete structures by using the models of the ground structure method. The micro lattice truss is modeled as assemblage of a number of unit cells. The progress of analysis repeat to undergo finite element analysis to feed-back results of stress to the stiffness of each member. Through the repeated this analysis, truss model is represented to form the topological materials and the structural shape with the use of the local stress condition without mathematical optimum tools. It is successful to analyse the shape-layout problem as numerical samples on the lattice truss model.

Joint Lattice-Reduction-Aided Precoder Design for Multiuser MIMO Relay System

  • Jiang, Hua;Cheng, Hao;Shen, Lizhen;Liu, Guoqing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3010-3025
    • /
    • 2016
  • Lattice reduction (LR) has been used widely in conventional multiple-input multiple-output (MIMO) systems to enhance the performance. However, LR is hard to be applied to the relay systems which are important but more complicated in the wireless communication theory. This paper introduces a new viewpoint for utilizing LR in multiuser MIMO relay systems. The vector precoding (VP) is designed along with zero force (ZF) criterion and minimum mean square error (MMSE) criterion and enhanced by LR algorithm. This implementable precoder design combines nonlinear processing at the base station (BS) and linear processing at the relay. This precoder is capable of avoiding multiuser interference (MUI) at the mobile stations (MSs) and achieving excellent performance. Moreover, it is shown that the amount of feedback information is much less than that of the singular value decomposition (SVD) design. Simulation results show that the proposed scheme using the complex version of the Lenstra--Lenstra--Lovász (LLL) algorithm significantly improves system performance.

Analysis of Airflow Pattern and Particle Dispersion in Enclosed Environment Using Traditional CFD and Lattice Boltzmann Methods

  • Inoguchi, Tomo;Ito, Kazuhide
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.2
    • /
    • pp.87-97
    • /
    • 2012
  • The indoor environments in high-rise buildings are generally well enclosed by defined boundary conditions. Here, a numerical simulation method based on the Lattice Boltzmann method (LBM), which aims to model and simulate the turbulent flow accurately in an enclosed environment, and its comparison with traditional computational fluid dynamics (CFD) results, are presented in this paper. CFD has become a powerful tool for predicting and evaluating enclosed airflows with the rapid advance in computer capacity and speed, and various types of CFD turbulence modeling and its application and validation have been reported. The LBM is a relatively new method; it involves solving of the discrete Boltzmann equation to simulate the fluid flow with a collision model instead of solving Navier-Stokes equations. In this study, the LBM-based scheme of flow pattern and particle dispersion analyses are validated using the benchmark test case of two- and three-dimensional and isothermal conditions (IEA/Annex 20 case); the prediction accuracy and advantages are also discussed by comparison with the results of CFD.

Two-dimensional Numerical Simulation of the Rising Bubble Flows Using the Two Phase Lattice Boltzmann Method (2상 격자 볼츠만 방법을 이용한 상승하는 기포 유동 2차원 수치 모사)

  • Ryu, Seung-Yeob;Park, Cheon-Tae;Han, Seung-Yeul;Ko, Sung-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.4
    • /
    • pp.31-36
    • /
    • 2010
  • Free energy based lattice Boltzmann method (LBM) has been used to simulate the rising bubble flows with large density ratio. LBM with compact discretization is able to reduce the spurious current of the static bubble test and be satisfied with the Laplace law. The terminal rise velocity and shape of the bubbles are dependent on Eotvos number, Morton number and Reynolds number. For single bubble flows, simulations are executed for various Eotvos number, Morton number and Reynolds number, and the results are agreed well with the experiments. For multiple bubbles, the bubble flow characteristics are related by the vortex pattern of the leading bubble. The coalescence of the bubbles are simulated successfully and the subsequent results are presented. The present method is validated for static, dynamic bubble test cases and compared to the numerical, experimental results.