• 제목/요약/키워드: Lattice relaxation

검색결과 123건 처리시간 0.026초

NMR Relaxometry of Water in Set Yogurt During Fermentation

  • Mok, Chul-Kyoon;Qi, Jinning;Chen, Paul;Ruan, Roger
    • Food Science and Biotechnology
    • /
    • 제17권5호
    • /
    • pp.895-898
    • /
    • 2008
  • The mobility of water in set yogurt during fermentation was studied using nuclear magnetic resonance (NMR) relaxometry. The spin-spin relaxation was analyzed using a 2-fraction model, resulting in 2 spin-spin relaxation time constants $T_{21}$ and $T_{22}$. Both $T_{21}$ and $T_{22}$ exhibited rapid changes between 2 and 4 hr of fermentation, coinciding with the drop in pH and the rise in lactic acid bacteria count. The spin-lattice relaxation time $T_1$ increased over the fermentation period. Both $T_1$ and $T_2$ showed an increase in the mobility of water upon gel formation during fermentation. Water redistribution within the gel matrix due to casein aggregation and structure forming may be responsible for the changes in mobility.

Nuclear Magnetic Resonance Study of 23Na Nucleus in NaBrO3 Single Crystal

  • Yeom, Tae Ho
    • Journal of Magnetics
    • /
    • 제20권4호
    • /
    • pp.342-346
    • /
    • 2015
  • The nuclear magnetic resonance of the $^{23}Na$ nucleus in a $NaBrO_3$ single crystal was investigated at the temperature range of 200 K~410 K. The tendencies of temperature dependence of the nuclear quadrupole coupling for the two magnetically inequivalent Na(I) and Na(II) centers are found to be opposite to each other. The nuclear spin-lattice relaxation mechanism of $^{23}Na$ in the $NaBrO_3$ crystal is investigated, and the result revealed that the Raman process is dominant in the temperature range investigated. The relaxation process of the $^{23}Na$ nuclear spins was well described by a single exponential function in time. The $T_1$ values of the $^{23}Na$ nuclei in the $NaBrO_3$ single crystal decreased with increasing temperature. The calculated activation energy for the $^{23}Na$ is $0.032{\pm}0.002eV$.

Rapid Quenching Dynamics of F Center Excitation by $OH^-$ Defects in KCI

  • 장두전;김필석
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권12호
    • /
    • pp.1184-1189
    • /
    • 1995
  • The rapid quenching dynamics of F center excitation by OH- defects in KCl crystals are investigated by monitoring ground state absorption bleach recovery, using a picosecond streak camera absorption spectrometer. F center absorption bleach in OH--doped crystals shows three distinguishable recovery components with the current temporal resolution, designated as slow, medium and fast components. The slow one is due to the normal relaxation process of F* centers as found in OH--free crystals. The others are consequent on energy transfer from electronically excited F centers to OH--vibrational levels. The fast component is a minor energy transfer process and resulting from the relaxation of somewhat distant, not the closest, associated pairs of F* and OH- defects. The energy transfer between widely separated F* and OH- defects opens up a recovery process via the medium component which is assisted by OH- librations, lattice vibrations and OH- dipole reorientations. The quenching behaviors of F* luminescence and photoionization by OH- are explained well by the relaxation process of the medium component.

Proton Magnetic Resonance Study of the Amino Group of Thioacetamide (TA) I. Quadrupole Relaxation Effects in NH$_2$ of Thioacetamide

  • Suhr, Jae-Ryun;Yoon, Chang-Ju;Ro, Seong-Gu;Choi, Young-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • 제8권4호
    • /
    • pp.230-232
    • /
    • 1987
  • Nitrogen-14 quadrupolar relaxation has been observed in the amino proton nmr spectra of TA in acetone and methanol solutions over the temperature range $-83^{\circ}C\; to\;+35^{\circ}C.$ The proton nmr lineshapes were analyzed to yield a $^{14}N$ spin lattice relaxation time $(T_1)_N$ as a function of temperature. Activation energies and correlation times at $25^{\circ}C$ for the molecular reorientation in the two solution phases have been calculated and the results are discussed.

($^{11}$B NMR study of vortex dynamics in LuNi$_2$B$_2$C

  • Lee, K.H.;Seo, S.W.;Kim, D.H.;Khang, K.H.;Seo, H.S.;Hwang, C.S.;Cho, B.K.;Lee, Moo-Hee
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 2000년도 High Temperature Superconductivity Vol.X
    • /
    • pp.107-110
    • /
    • 2000
  • ($^{11}$B NMR measurements have been performed on single crystals of LuNi$_2$B$_2$C superconductor to investigate vortex lattice structures and dynamical behavior. The spectrum in the superconducting state is significantly broadened by local field inhomogeneity due to the vortex lattice and the peak point of the spectrum shifts toward low magnetic field due to the imperfect field penetration. The linewidth of the spectrum reflecting local field variation is much smaller than expected for conventional vortex lattices and shows peculiar increase at low temperature. Furthermore, the transverse relaxation rate, 1/T$_2$, probing the slow motion of vortices, exhibits a single peak as temperature decreases. These prominent results highlight significant fluctuation of vortices even for this low T$_c$, and nearly isotropic 3D superconductor.

  • PDF

Lattice-Boltzmann Simulation of Fluid Flow around a Pair of Rectangular Cylinders

  • Taher, M.A.;Baek, Tae-Sil;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권1호
    • /
    • pp.62-70
    • /
    • 2009
  • In this paper, the fluid flow behavior past a pair of rectangular cylinders placed in a two dimensional horizontal channel has been investigated using Lattice-Boltzmann Method(LBM). The LBM has built up on the D2Q9 model and the single relaxation time method called the Lattice-BGK(Bhatnagar-Gross-Krook)model. Streamlines, velocity, vorticity and pressure contours are provided to analyze the important characteristics of the flow field for a wide range of non dimensional parameters that present in our simulation. Special attention is paid to the effect of spacing(d) between two cylinders and the blockage ratio A(=h/H), where H is the channel height and h is the rectangular cylinder height. for different Reynolds numbers. The first cylinder is called upstream cylinder and the second one as downstream cylinder. The downstream fluid flow fields have been more influenced by its blockage ratios(A) and Reynolds numbers(Re) whereas the upstream flow patterns(in front of downstream cylinder) by the gap length(d) between two cylinders. Moreover, it is observed that after a certain gap, both upstream and downstream flow patterns are almost similar size and shape. The simulation result has been compared with analytical solution and it is found to be in excellent agreement.

Study of Mass and Flow Resistance in a Square Ribbed Microchannel using Lattice Boltzmann Method

  • Taher, Mohammad Abu;Kim, Heuy-Dong;Lee, Yeon-Won
    • 동력기계공학회지
    • /
    • 제18권6호
    • /
    • pp.207-214
    • /
    • 2014
  • Mass and flow resistance in a square ribbed microchannel have been studied numerically using the Lattice Boltzmann Method. It has been build up on two dimensional nine velocity vectors model with single relaxation time method called the Lattice Bhatnagor-Gross-Krook model. To analyze the roughness effect on the flow resistance namely the friction factor and mass flow has been discussed at the slip flow regime, $0.01{\leq}Kn{\leq}0.10$, where Kn is the Knudsen number. The wall roughness is considered by square microelements with a relative roughness height up to maximum 10% of channel height. The velocity profiles in terms of streamlines near the riblets are demonstrated to be responsible for the roughness effect. It is found that the roughness effect leads to increase the flow resistance with roughness height but it is decreased significantly with increasing the space between two roughness elements as well as the Knudsen number. In addition, the mass flow decreased linearly with increasing both roughness height and gap but significantly changed at the slip flow regime.

27Al and 87Rb Nuclear Magnetic Resonance Study of the Relaxation Mechanisms of RbAl(CrO4)2·2H2O Single Crystals

  • Kim, Jae Sung;Lim, Ae Ran
    • 한국자기공명학회논문지
    • /
    • 제16권2호
    • /
    • pp.111-121
    • /
    • 2012
  • The spin-lattice relaxation times, $T_1$, and spin-spin relaxation times, $T_2$, of the $^{27}Al$ and $^{87}Rb$ nuclei in $RbAl(CrO_4)_2{\cdot}2H_2O$ crystals were investigated. The presence of only one resonance line for the $^{27}Al$ nuclei indicates that the results in a dynamical averaging of the crystal electric field that produces a cubic symmetry field. The changes in the temperature dependence of $T_1$ are related to variations in the symmetry of the octahedra of water molecules surrounding $Al^+$ and $Rb^+$. The $T_1$ values for the $^{27}Al$ and $^{87}Rb$ nuclei are different due to differences in the local environments of these ions. We also compared these $^{27}Al$ and $^{87}Rb$ NMR results with those obtained for $RbAl(CrO_4)_2{\cdot}2H_2O$ crystals. The relaxation mechanisms of $RbAl(XO_4)_2{\cdot}nH_2O$ (X=Cr and S) crystals are characterized by completely different NMR behaviors.

혼성 격자볼츠만 방법을 이용한 공동 형상 내부에서의 혼합 특성에 관한 수치적 연구 (Numerical Investigation of Mixing Characteristics in a Cavity Flow by Using Hybrid Lattice Boltzmann Method)

  • 신명섭;전석윤;윤준용
    • 대한기계학회논문집B
    • /
    • 제37권7호
    • /
    • pp.683-693
    • /
    • 2013
  • 본 연구에서는 혼성 격자볼츠만 방법(HLBM)을 이용하여 상판이 일정한 속도로 움직이는 공동 형상 내부에서의 혼합 특성에 대하여 수치적으로 연구하였다. 먼저, 공동 형상에서 기존의 신뢰성 있는 유동장 결과와의 비교를 통해 LB-SRT 모델과 LB-MRT 모델의 신뢰성을 검토하였다. 두 모델 모두 기존의 연구결과와 유사한 결과를 보였으나, LB-MRT 모델이 LB-SRT 모델보다 높은 Re수에서는 수치적 안정성이 높은 것을 확인하였다. 수치적 안정성이 좋은 LB-MRT 모델을 토대로 유한차분법을 적용한 HLBM을 이용하여 공동 형상 내부에서의 농도장을 수치 해석하였다. Re수와 Pe수를 변화하여 공동 형상 내부의 혼합 특성과 물질 전달 형태에 대하여 파악하였다.