• Title/Summary/Keyword: Lattice preferred orientation

Search Result 34, Processing Time 0.027 seconds

Lattice Preferred Orientation(LPO) and Seismic Anisotropy of Amphibole in Gapyeong Amphibolites (경기육괴 북부 가평 지역에 분포하는 각섬암 내부 각섬석의 격자선호방향(LPO)과 지진파 비등방성)

  • Kim, Junha;Jung, Haemyeong
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.259-272
    • /
    • 2020
  • The seismic properties in the crust are affected by the lattice preferred orientation(LPO) of major minerals in the crust. Therefore, in order to understand the internal structure of the crust using seismic data, information on the LPO of the major constituent minerals and the seismic properties of major rocks in a specific region are needed. However, there is little research on the LPOs of minerals in the crust in Korea. In this study, we collected amphibolites from two outcrops in Wigokri, Gapyeong, located in the nothern portion of Gyeonggi Massif, and we measured the LPOs of major minerals of amphibolite, especially amphibole and plagioclase through EBSD analysis, and calculated seismic properties of amphibolite. Two types of LPOs of amphibole, which are defined as type I and type IV, were observed in the two outcrops of Gapyeong amphibolites, respectively. In the case of amphibolites with the type I LPO of amphibole, large seismic anisotropy of both P- and S-wave was observed, while in the amphibolites with the type IV LPO of amphibole, small seismic anisotropy was observed. This is consistent with previous experimental results. The polarization direction of the fast S-wave was aligned subparallel to the lineation regardless of the LPO types of amphibole. The seismic anisotropy observed in Gapyeong is expected to be helpful to interpret the structure and seismic data within the crust in Gyeonggi Massif.

Effect of Substrate-Induced Stress and Grain Size on the formation of VO2 thin films (기판에 의한 응력과 입계크기가 이산화바나듐 박막 형성에 미치는 영향 연구)

  • Koo, Hyun;Bae, Sung-Hwan;Shin, Dong-Min;Kwon, O-Jong;Park, Chan
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1279_1280
    • /
    • 2009
  • Vanadium dioxide(VO2) has been reported to be the most attractive material for thermochromic windows due to its semiconductor-metal phase transition at around $68^{\circ}C$. However, our previous experiment showed it is difficult to grow VO2 thin films directly on glass substrate, whereas thermochromic VO2 thin films were successfully grown on R-cut sapphire substrate. Properties of VO2 thin films on different orientations of sapphire substrates were already reported. Furthermore, VO2 thin films were successfully grown heteroepitaxially on (001) preferred oriented ZnO coated glass. We deposited VO2 thin films using V2O5 targets on substrates with various lattice parameters with same orientation(SrTiO3, MgO, and Sapphire substrate of (001) orientation) by pulsed laser deposition. In this work, we will discuss the effects of lattice misfit, substrate-induced stress and grain size on the properties of VO2 thin films deposited on various substrate materials.

  • PDF

VMn underlayer for CoCrPt Longitudinal Recording Media

  • Oh, S.C;Lee, T.D
    • Journal of Magnetics
    • /
    • v.5 no.4
    • /
    • pp.143-146
    • /
    • 2000
  • In this study, the magnetic properties of CoCrPt films (far longditudinal recording) on a novel VMn underlayer were measured and compared with similar films on conventional Cr underlayers. It was found that the VMn film had (200) preferred orientation and the lattice constant was about 0.2967 nm, which is slightly larger than that of the Cr film, 0.2888 m. The grain size of the VMn film was 9.8 nm at 30 m thickness, about 39% smaller than that of a similarly deposited Cr. The CoCrPt/VMn films showed higher coercivity in comparison with the CoCrPt/Cr films. The coercivity increase is attributed to the increased Co (11.0) texture, improved lattice matching between Co (11.0) and VMn (200), and lower stacking fault density. V or Mn must have diffused into the CoCrPt magnetic layer uniformly rather than preferentially along grain boundaries. This reduced Ms at higher substrate temperature.

  • PDF

VMn underlayer for CoCrPt Longitudinal Media

  • S. C. Oh;Lee, T. D.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.352-362
    • /
    • 2000
  • In this study, effects of novel VMn underlayer on magnetic properties of CoCrPt/VMn longitudinal medium was studied and compared with those of CoCrPt/Cr medium. It was found that the VMn film had (200) preferred orientation and the lattice constant was about 0.2967 nm, which is slightly larger than that of the Cr, 0.2888 nm. The grain size of VMn film was 9.3 nm at 30 nm thickness, and this is about 38 % smaller than that of a similarly deposited Cr film. The CoCrPt/VMn films showed higher coercivity in comparison with the CoCrPt/Cr films. The coercivity increase seems to be attributed to the increased Co (11.0) texture, improved lattice matching between Co (11.0) and VMn (200), and lower stacking fault density. Mn must have diffused into the CoCrPt magnetic layer more uniformly rather than preferentially along grain boundaries this reduced Ms at higher substrate temperature

  • PDF

Structural Characteristisrics and Adhesion of Chemicaly Vapor Deposited TiN Films on Stainless Steels (화학증착된 TiN 박막의 구조적 특성 및 결합력에 관한 연구)

  • 이민섭;이성래;백영현
    • Journal of the Korean institute of surface engineering
    • /
    • v.22 no.1
    • /
    • pp.17-25
    • /
    • 1989
  • The structural Charactesties and adhesion of chemically vapor deposited TiN film on stain less steels have been investated as functions of deposition temperature, surface roughness of sub state, and types of substrates. The grain zine and the lattice parameter of TiN film decreased with decreasing roughness of substates. The(200) preferred orientation was developed dominatly and the lattlice parameter decreased as temperature intereased reardless of the surdless roughnessand type of the substrates used. The surface morphology of TiN film changed from bushed crystal to a plate and then to pyamidal dense crystals with an increase in the deposition temperature. The adhesion of TiN films increased with coating thinkness and decreased with surface roughness in general. The calculations using a Bejamin & Weaver's model have been compard. Maximum valuse of adhesion energy calculated using Laguier's model were W304=331Jm-2,w410=113Jm-2,andW430=107jm-2

  • PDF

Growth of Gallium Oxide Thin Film on c-, a-, m-, r-Plane Sapphire Substrates Using Mist Chemical Vapor Deposition System (미스트 화학기상증착법을 이용한 c면, a면, m면, r면 사파이어 기판 위의 산화갈륨 박막 성장 연구 )

  • Gi-Ryeo Seong;Seong-Ho Cho;Kyoung-Ho Kim;Yun-Ji Shin;Seong-Min Jeong;Tae-Gyu Kim;Si-Young Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.74-80
    • /
    • 2023
  • Gallium oxide (Ga2O3) thin films were grown on c-, a-, m-, r-plane sapphire substrates using a mist chemical vapor deposition system. Various growth temperature range of 400~600℃ was applied for Ga2O3 thin film deposition. Then, several structural properties were characterized such as film thickness, crystal phase, lattice orientation, surface roughness, and optical bandgap. Under the certain growth temperature of 500℃, all grown Ga2O3 featured rhombohedral crystal structures and well-aligned preferred orientation to sapphire substrate. The films grown on c-and r-plane sapphire substrates, showed low surface roughness and large optical bandgap compared to those on a-and m-plane substrates. Therefore, various sapphire orientation can be potentially applicable for future Ga2O3-based electronics applications.

Upper Mantle Heterogeneity Recorded by Microstructures and Fluid Inclusions from Peridotite Xenoliths Beneath the Rio Grande Rift, USA (미국 리오 그란데 리프트 페리도타이트 포획암의 미구조와 유체포유물에 기록된 상부맨틀의 불균질성)

  • Park, Munjae
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.273-281
    • /
    • 2022
  • Mantle heterogeneity is closely related to the distribution and circulation of volatile components in the Earth's interior, and the behavior of volatiles in the mantle strongly influences the rheological properties of silicate rocks. In mantle xenoliths, these physicochemical properties of the upper mantle can be recorded in the form of microstructures and fluid inclusions. In this paper, I summarized and reviewed the results of previous studies related to the characteristics of microstructures and fluid inclusions from peridotite xenoliths beneath the Rio Grande Rift (RGR) in order to understand the evolution and heterogeneity of upper mantle. In the RGR, the mantle peridotites are mainly reported in the rift axis (EB: Elephant Butte, KB: Kilbourne Hole) and rift flank (AD: Adam's Diggings) regions. In the case of the former (EB and KB peridotites), the type-A lattice preferred orientation (LPO), formed under low-stress and low-water content, was reported. In the case of the latter (AD peridotites), the type-C LPO, formed under low-stress and high-water content, was reported. In particular, in the case of AD peridotites, at least two fluid infiltration events, such as early (type-1: CO2-N2) and late (type-2: CO2-H2O), have been recorded in orthopyroxene. The upper mantle heterogeneity recorded by these microstructures and fluid inclusions is considered to be due to the interaction between the North American plate and the Farallon plate.

Relationship between Olivine Fabrics and Seismic Anisotropy in the Yugu Peridotites, Gyeonggi Massif, South Korea (경기육괴 유구 페리도타이트의 감람석 미구조와 지진파 비등방성의 관계)

  • Munjae Park
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.253-261
    • /
    • 2024
  • Olivine, a major mineral in the upper mantle with strong intrinsic elastic anisotropy, plays a crucial role in seismic anisotropy in the mantle, primarily through its lattice preferred orientation (LPO). Despite this, the influence of the microstructure of mylonitic rocks on seismic anisotropy remains inadequately understood. Notably, there is a current research gap concerning seismic anisotropy directly inferred from mylonitic peridotite massifs in Korea. In this study, we introduce the deformation microstructure and LPO of olivine in the mantle shear zone. We calculate the characteristics of seismic anisotropy based on the degree of deformation (proto-mylonite, mylonite, ultra-mylonite) and establish correlations between these characteristics. Our findings reveal that the seismic anisotropy resulting from the olivine LPO in the ultra-mylonitic rock appears to be the weakest, whereas the seismic anisotropy resulting from the olivine LPO in the proto-mylonitic rock appears to be the strongest. The results demonstrate a gradual decrease in seismic anisotropy as the fabric strength (J-index) of olivine LPO diminishes, irrespective of the specific pattern of olivine's LPO. Moreover, all samples exhibit a polarization direction of the fast S-wave aligned subparallel to the lineation. This suggests that seismic anisotropy originating from olivine in mylonitic peridotites is primarily influenced by fabric strength rather than LPO type. Considering these distinctive characteristics of seismic anisotropy is expected to facilitate comparisons and interpretations of the internal mantle structure and seismic data in the Yugu area, Gyeonggi Massif.

Structural and electrical properties of ZnO:In films deposited on glass substrates by a spray Pyrolysis method (분무열분해법에 의한 ZnO:In 박막의 구조와 전기적 특성)

  • 서동주;박선흠
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.2
    • /
    • pp.213-218
    • /
    • 2001
  • ZnO and ZnO:In films were deposited on the glass substrates by a spray pyrolysis method. It is found that ZnO films were polycrystalline with the preferred orientation (002) and have a hexagonal structure with lattice constants of a=3.242 $\AA$ and c=5.237 $\AA$. The crystalline structure of ZnO:In films deposited at the In content of 0~6.03 at. % were the same as that of ZnO films, but its lattice constants was slightly larger than those of ZnO films. The relative atomic ratios of metal ion of ZnO:In films were in accordance with those of the spray solution within the experimental error. The minimum resistivity of and the maximum carrier concentration of 19.1 $\Omega\cdot\textrm{cm}$ and the maximum carrier concentration of $2.11\times10^{19}\textrm{cm}^{-3]$ obtained from the ZnO:In films when In content was 2.76 at. %. The optical transmission of the sample grown at the In content of 3.93 at. % was about 95% in the wavelength between 400 and 800 nm.

  • PDF

Growth behavior of Ti-Al-V-N Films Prepared by Dc Reactive Magnetron Sputtering (DC Reactive Magnetron Sputtering법에 의한 Ti-Al-V-N 박막의 성장거동)

  • Sohn, Yong-Un;Chung, In-Wha;Lee, Young-Ki
    • Korean Journal of Materials Research
    • /
    • v.9 no.7
    • /
    • pp.688-694
    • /
    • 1999
  • Ti-6Al-4V-N films have been grown onto glass substrates by dc reactive magnetron sputtering from a Ti-6Al-4V-N alloy target at different nitrogen partial pressure, input powers and sputtering times. The influence of various sputtering conditions on structural properties of Ti-6Al-4V-N films was investigated by measuring their X-ray diffraction. The quaternary Ti-6Al-4V-N film is crystallizing in a face centered cubic TiN structure, the lattice parameter is smaller than the TiN parameter as titanium atoms of the TiN lattice are replaced by aluminum and vanadium atoms. The films show the (111) preferred orientation and the (111) peak intensity decreases as the nitrogen partial pressure is increased, but the intensity increases as the sputtering time is increased. The deposition rate and the grain size are alto related with the variation of various sputtering conditions.

  • PDF