• Title/Summary/Keyword: Lattice design

Search Result 315, Processing Time 0.023 seconds

Design of Real-Time Adaptive Lattice Predictor Using (DSP를 이용한 실시간 적응격자 예측기 설계)

  • 김성환;홍기룡;홍완희
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.2
    • /
    • pp.119-124
    • /
    • 1988
  • Real-time adaptive lattice predictor was implemented on the TMS32020 DSP chip for digital signal processing. The implemented system was composed of Input-Output units and centrla processing-control unit and its supporting assembly soft ware. The performance of hardware realization was verified by comparing input signal and one-step prediction signal which are calcualted by the real-time adaptive lattice predictor. As a result, for 4 stage lattice structure, the maximum running frequency was obtained as 6.41 KHz in this experiment.

  • PDF

A Study on the optimal design of lattice boom crane for offshore plant (해양플랜트용 라티스 붐 크레인의 최적 설계에 관한 연구)

  • Kim, Hyun-ji;Kim, Ji-hye;Park, Sang-hyeok;Choi, Si-yeon;Huh, Sun-chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.757-765
    • /
    • 2019
  • In manufacturing An offshore plant is a structure that produces resources buried in the seabed. It can be classified into fixed, floating, and hybrid methods depending on the installation method. In particular, the Lattice boom type crane is typically used because it is used for a long time in the sea and moves to other seas, which is less affected by wind. In this study, the crane was designed by using three-step optimization design in the early stage of the design of Lattice boom crane for offshore plant. Finite element analysis was performed to verify the safety factor, deflection, buckling coefficient and fatigue life of the designed crane and the results were verified.

Lattice-spring-based synthetic rock mass model calibration using response surface methodology

  • Mariam, Al-E'Bayat;Taghi, Sherizadeh;Dogukan, Guner;Mostafa, Asadizadeh
    • Geomechanics and Engineering
    • /
    • v.31 no.5
    • /
    • pp.529-543
    • /
    • 2022
  • The lattice-spring-based synthetic rock mass model (LS-SRM) technique has been extensively employed in large open-pit mining and underground projects in the last decade. Since the LS-SRM requires a complex and time-consuming calibration process, a robust approach was developed using the Response Surface Methodology (RSM) to optimize the calibration procedure. For this purpose, numerical models were designed using the Box-Behnken Design technique, and numerical simulations were performed under uniaxial and triaxial stress states. The model input parameters represented the models' micro-mechanical (lattice) properties and the macro-scale properties, including uniaxial compressive strength (UCS), elastic modulus, cohesion, and friction angle constitute the output parameters of the model. The results from RSM models indicate that the lattice UCS and lattice friction angle are the most influential parameters on the macro-scale UCS of the specimen. Moreover, lattice UCS and elastic modulus mainly control macro-scale cohesion. Lattice friction angle (flat joint fiction angle) and lattice elastic modulus affect the macro-scale friction angle. Model validation was performed using physical laboratory experiment results, ranging from weak to hard rock. The results indicated that the RSM model could be employed to calibrate LS-SRM numerical models without a trial-and-error process.

The Effect of Vertical Strut in Circular Arch Lattice Structure by Selective Laser Sintering for Lightweight Structure

  • Sangwon Lee;Jae-An Jeon;Sang-Eui Lee
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.173-179
    • /
    • 2023
  • The sandwich structure, consisting of a core and a face sheet, is used for lightweight structural application. Generally, cellular structures like honeycomb, foam, and lattice structures are utilized for the core. Among these, lattice structures have several advantages over other types of structures. In other studies, curved lattice structures were reported to have higher mechanical properties than straight structures by converting shear stresses acting on the structure into compressive stresses. Moreover, the addition of vertical struts can have a positive effect on the mechanical properties of the lattice structure. For the purpose, two lattice structures with Circle Arch (CC) and Circular Arch with a vertical column (CC_C) were studied, which were fabricated by using selective laser sintering was conducted. The result showed that CC_C has dramatic performance improvements in specific strength, modulus, and strain energy density compared to CC, confirming that vertical struts played a significant role in the lattice core. Finite element analysis was employed to determine the cause of the stress behavior of CC and CC_C. This study is expected to help design structurally superior lattice cores and sandwich structures.

A design method for optical fiber filter of lattice structure without constraints (제약조건이 필요없는 격자형 광섬유필터의 설계법)

  • 이채욱;문병현
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.12
    • /
    • pp.31-44
    • /
    • 1996
  • Since optical delay line signal processing which utilizes optical fiber as delay line elements can provide high speed and broadband signal processing, the optical delay line signal processing has numerous applications. Recently, many research papers which optical delay line signal processing techniques are being applied to OCDMA are published. The author has published paper on the design method for optical fiber filters of lattice structure. However, the previous design method does not realize the transfer function all the time. It can be realized with constraints. In this paper, we propose the design method that can realize the transfer function all the time without any constraints for the optical fiber filter of lattice structure.

  • PDF

Calculation of The Car Aerodynamic Characteristics Using Lattice-Boltzmann method (래티스 볼쯔만 방법을 이용한 자동차 외부공력특성 연구)

  • Lee B.C;Kim M.S;Lee C.H
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.561-564
    • /
    • 2002
  • For the reduction of fuel consumption of high speed, the aerodynamic drag must be reduced. In early vehicle design process, it is very important to have information about aerodynamic characteristics of design models. In this phase CFD methods are usually used to predict the aerodynamic forces. But commercial programs using turbulence models cannot give a good agreement with experimental result and have also problems with convergence. PowerFLOW employs a new technology called DIGITAL PHYSICS, which provides a different approach to simulating fluids. DIGITAL PHYSICS uses a lattice-based approach (extended from lattice-gas and lattice-Boltzmann methods) where time, space and velocity are discrete. This discrete system represents the Wavier-Stokes continuum behavior without the numerical instability Issues of traditional CFD solvers, such as convergence. In this paper, aerodynamic performance of vehicles are simulated using PowerFLOW by Exa and results are compared with experimental wind tunnel data.

  • PDF

Design of the Spur Gear with Honeycomb Lattice Structure and PBF Printing

  • Chul-Kyu Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_1
    • /
    • pp.529-536
    • /
    • 2023
  • In this study, the spur gear with honeycomb lattice structures are designed. The pitch diameter and body length of the spur gear are Ø93 mm and 104.0 mm, respectively. The designed gear was printed using Powder bed fusion (PBF) 3D printer. The gear is 3D printed perfectly. Even the teeth and honeycombs of the gear were output in the same way as the design shape. The printed gear with honeycomb lattice structure has a 24% smaller cross-sectional area and 29% smaller volume and weight than conventional solid structure gears. The surface roughness is approximately 4.5㎛, and the hardness is 345 HV.

Field Measurements for the Lattice Girder and the Shotcrete Lining (격자지보와 숏크리트 계측에 대한 현장실험 연구)

  • Kim, Hak-Joon;Jin, Soo-Hwan;Park, Si-Hyun
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.93-102
    • /
    • 2008
  • The use of lattice girder is increased at the tunnel site in Korea because of the several advantages over the traditional H-steel rib. The lattice girder supports the ground with shotcretes, forming a combined support system. Therefore, stress measurements at the lattice girder are necessary to calculated the ground loads. However, field measurements at the lattice girder are rarely performed at the tunnel site. The proper way of stress measurements for the lattice girder is not fully established in Korea. The correction of stress measurements at the shotcretes is often disregarded even though the measured stresses include non-stress related strains. Results of the stress measurements obtained from the lattice girder and non-stress shotcretes are used to improve the credibility of the stress measurements at the primary lining.

Analysis of Nonlinear Torsional Behavior for High Strength Reinforced Concrete Structure Using 3-Dimensional Lattice Model (3차원 래티스 모델을 사용한 고강도 철근콘크리트 구조물의 비선형 비틀림 해석)

  • Kwon, Min-Ho;Seo, Hyun-Su;Lim, Jeong-Hee;Kim, Jin-Sup
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • Because of earthquakes that have recently struck, seismic design criteria that considered performance of structure were included in the design concepts. Thus, a simple analysis tool is needed to predict the strength and ductility of RC structures. In this study, three-dimensional lattice model was developed to expand the two-dimensional lattice model. Torsional analysis of the structure was done to evaluate the developed three-dimensional lattice model. Lattice model was evaluated by comparing analytical results with experimental results. Lattice element size was evaluated using the results of analysis. Torsional analysis results, using three-dimensional lattice model, show that the results are relatively consistent with the experimental values.

Design of FIR/IIR Lattice Filters using the Circulant Matrix Factorization (Circulant Matrix Factorization을 이용한 FIR/IIR Lattice 필터의 설계)

  • Kim Sang-Tae;Lim Yong-Kon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.1
    • /
    • pp.35-44
    • /
    • 2004
  • We Propose the methods to design the finite impulse response (FIR) and the infinite impulse response (IIR) lattice filters using Schur algorithm through the spectral factorization of the covariance matrix by circulant matrix factorization (CMF). Circulant matrix factorization is also very powerful tool used for spectral factorization of the covariance polynomial in matrix domain to obtain the minimum phase polynomial without the polynomial root finding problem. Schur algorithm is the method for a fast Cholesky factorization of Toeplitz matrix, which easily determines the lattice filter parameters. Examples for the case of the FIR filter and for the case of the In filter are included, and performance of our method check by comparing of our method and another methods (polynomial root finding and cepstral deconvolution).