• Title/Summary/Keyword: Lattice deformation

Search Result 104, Processing Time 0.018 seconds

A Study of Conservation and Production Techniques of Sword with Round pommel from Jisandong Tomb No.39 (지산동 39호분 장식대도의 보존과 제작기법)

  • Yun, Eunyoung;Jeon, Hyosoo
    • Conservation Science in Museum
    • /
    • v.16
    • /
    • pp.14-31
    • /
    • 2015
  • Sword with round pommel discovered in tomb No.39 in the Jisandong tumuli group (M310) is a large sword with a looped pommel enclosing a sculpted dragon head. The sword was produced using different techniques; gold decoration, plating, openwork carving and hammering by using gold and silver. This sword treated conservation work because it has deformation and damages of handle decoration, missing part of sword, and corrosion. Conservation treatment was that foreign material and corroded metal were removed from the surface, and performed to stabilize and reinforce the weakened metal. During the conservation treatment, the object was examined to understand its materials and production method. The result of research, the dragon head inside the looped, amalgam-plated pommel has surface gold decorations. The pommel has a thin gold plate placed over a bottom plate made of copper, which was hammered to create an embossed design. The silver plate-covered hilt, cylindrical in shape, has an openwork lattice design. The steel blade is single-edged. Finally, the locket of the sheath has an embossed design also created through hammering on a thin gold plate placed over the copper bottom plate.

Discussion on the Mechanical Alloying Process of Ni-20Cr alloy (Ni-20 Cr계 분말의 기계적 합금화 과정에 대한 고찰)

  • Yoo, Myoung Ki;Choi, Ju
    • Analytical Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.197-205
    • /
    • 1993
  • Blends of elemental Ni and 20 weight % Cr powder were milled for different period in a laboratory attritor. Powder size distribution, microstructure and X-ray diffraction characteristics were investigated as a function of processing period. Saturated magnetization, Ms and coercive force, Hc we also measured and compared with plasma melted ingot to confirm the mechanically alloyed states. Mechanical alloying occurred as a consequence of the partition of powders and the increase of interfacial area driving diffusing of Cr into Ni. However, magnetic properties of chemically homogeneous solid solution like melted ingot has not been observed even though steady state of submicron grain size has been achieved after milling over 15 hrs. Further mechanical alloying period gave refinement of grain size, which resulted in the increase of alloyed layer. It is concluded that homogenization should be controlled by the increase of interfacial area between constitutive powders caused by plastic particle deformation and by the diffusion of Cr within the alloyed phase into Ni-rich phase through lattice defects.

  • PDF

Effects of fission product doping on the structure, electronic structure, mechanical and thermodynamic properties of uranium monocarbide: A first-principles study

  • Ru-Ting Liang;Tao Bo;Wan-Qiu Yin;Chang-Ming Nie;Lei Zhang;Zhi-Fang Chai;Wei-Qun Shi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2556-2566
    • /
    • 2023
  • A first-principle approach within the framework of density functional theory was employed to study the effect of vacancy defects and fission products (FPs) doping on the mechanical, electronic, and thermodynamic properties of uranium monocarbide (UC). Firstly, the calculated vacancy formation energies confirm that the C vacancy is more stable than the U vacancy. The solution energies indicate that FPs prefer to occupying in U site rather than in C site. Zr, Mo, Th, and Pu atoms tend to directly replace U atom and dissolve into the UC lattice. Besides, the results of the mechanical properties show that U vacancy reduces the compressive and deformation resistance of UC while C vacancy has little effect. The doping of all FPs except He has a repairing effect on the mechanical properties of U1-xC. In addition, significant modifications are observed in the phonon dispersion curves and partial phonon density of states (PhDOS) of UC1-x, ZrxU1-xC, MoxU1-xC, and RhxU1-xC, including narrow frequency gaps and overlapping phonon modes, which increase the phonon scattering and lead to deterioration of thermal expansion coefficient (αV) and heat capacity (Cp) of UC predicted by the quasi harmonic approximation (QHA) method.

ARPES Study of Quasi-Two Dimensional CDW System CeTe2 (준이차원 전하밀도파 CeTe2의 각분해 광전자 분광 연구)

  • Kim, D.H.;Lee, H.J.;Kang, J.S.;Kim, H.D.;Min, B.H.;Kwon, Y.S.;Kim, J.W.;Min, B.I.
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.5
    • /
    • pp.173-177
    • /
    • 2010
  • The electronic structure of charge-density-wave (CDW) system $CeTe_2$ has been investigated by using angle-resolved photoemission spectroscopy (ARPES). The clearly dispersive band structures are observed in the measured ARPES spectra, indicating the good quality of the single-crystalline sample employed in this study. The four-fold symmetric patterns are observed in the constant energy (CE) mappings, indicating the $2{\times}2$ lattice deformation in the Te(1) sheets. The observed CE images are similar to those of $LaTe_2$, suggesting that Ce 4f states have the minor contribution to the CDW formation in $CeTe_2$. This study reveals that the carriers near the Fermi level should have mainly the Te(1) 5p and Ce 5d character, that the Te(1) 5p bands contribute to the CDW formation, and that the Ce 5d bands cross the Fermi level even in the CDW state.