• 제목/요약/키워드: Latin-hypercube design

검색결과 110건 처리시간 0.176초

신경회로망 기법을 사용한 액체금속원자로 봉다발의 형상최적화 (Shape Optimization of LMR Fuel Assembly Using Radial Basis Neural Network Technique)

  • 라자 와심;김광용
    • 대한기계학회논문집B
    • /
    • 제31권8호
    • /
    • pp.663-671
    • /
    • 2007
  • In this work, shape optimization of a wire-wrapped fuel assembly in a liquid metal reactor has been carried out by combining a three-dimensional Reynolds-averaged Navier-Stokes analysis with the radial basis neural network method, a well known surrogate modeling technique for optimization. Sequential Quadratic Programming is used to search the optimal point from the constructed surrogate. Two geometric design variables are selected for the optimization and design space is sampled using Latin Hypercube Sampling. The optimization problem has been defined as a maximization of the objective function, which is as a linear combination of heat transfer and friction loss related terms with a weighing factor. The objective function value is more sensitive to the ratio of the wire spacer diameter to the fuel rod diameter than to the ratio of the wire wrap pitch to the fuel rod diameter. The optimal values of the design variables are obtained by varying the weighting factor.

회전하는 냉각유로의 곡관부에 부착된 가이드 베인의 형상 최적설계 (Shape Optimization of a Rotating Two-Pass Duct with a Guide Vane in the Turning Region)

  • 문미애;김광용
    • 한국유체기계학회 논문집
    • /
    • 제14권1호
    • /
    • pp.66-76
    • /
    • 2011
  • The heat transfer and pressure loss characteristics of a rotating two-pass channel with a guide vane in the turning region have been studied using three-dimensional Reynolds-averaged Navier-Stokes (RANS) analysis, and the shape of the guide vane has been optimized using surrogate modeling optimization technique. For the optimization, thickness, location and angle of the guide vanes have been selected as design variables. The objective function has been defined as a linear combination of the heat transfer and the friction loss related terms with a weighting factor. Latin hypercube sampling has been applied to determine the design points as design of experiments. A weighted-average surrogate model, PBA has been used as the surrogate model. The guide vane in the turning region does not influence the heat transfer in the first passage upstream of the turning region, but enhances largely the heat transfer in the turning region and the second passage. In an example of the optimization, the objective function has been increased by 13.6%.

항공기 예비엔진 및 모듈 재고수준이 전시 운용가용도에 미치는 영향 (The Impact of Aircraft Spare Engine and Module Inventory Level on Wartime Operational Availability)

  • 김진호;이상진;정성태
    • 경영과학
    • /
    • 제31권2호
    • /
    • pp.33-48
    • /
    • 2014
  • It is important to maintain on operational availability of aircraft during wartime. The KF-16 fighter, the backbone of the ROKAF (Republic Of Korea Air Force), has a single engine. Therefore, the engine has a critical influence on operational availability. The purpose of this study is to estimate optimal levels of spare part inventories concerning both engines and modules. That is provided by linear programming methods utilizing a developed meta-model. For drawing out the meta-model, we develop a simulation model which can consider wartime demands. In the previous study, $2^k$ factorial design method is used to check the influence of each independent variable. That method requires relatively many scenarios because every extreme value combination of independent variables should be checked. However, this study adopts NOLH (Nearly Orthogonal Latin Hypercube) as an experimental design. By adopting NOLH, this study increases not only efficiency but also accuracy. That is proven by comparing the validity of the developed meta-model on both experimental designs. This study also utilizes the OptQuest simulation tool in ARENA to derive the optimal level of spare stocks. By comparing the result of OptQuest to that of the developed meta-model, the validity of this study is secured.

Exergetic analysis for optimization of a rotating equilateral triangular cooling channel with staggered square ribs

  • Moon, Mi-Ae;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권3호
    • /
    • pp.229-236
    • /
    • 2016
  • Exergetic analysis was introduced in optimization of a rotating equilateral triangular internal cooling channel with staggered square ribs to maximize the net exergy gain. The objective function was defined as the net exergy gain considering the exergy gain by heat transfer and exergy losses by friction and heat transfer process. The flow field and heat transfer in the channel were analysed using three-dimensional Reynolds-averaged Navier-Stokes equations under the uniform temperature condition. Shear stress transport turbulence model has been selected as a turbulence closure through the turbulence model test. Computational results for the area-averaged Nusselt number were validated compared to the experimental data. Three design variables, i.e., the angle of rib, the rib pitch-to-hydraulic diameter ratio and the rib width-to-hydraulic diameter ratio, were selected for the optimization. The optimization was performed at Reynolds number, 20,000. Twenty-two design points were selected by Latin hypercube sampling, and the values of the objective function were evaluated by the RANS analysis at these points. Through optimization, the objective function value was improved by 22.6% compared to that of the reference geometry. Effects of the Reynolds number, rotation number, and buoyancy parameter on the heat transfer performance of the optimum design were also discussed.

NSGA-II를 통한 딤플채널의 다중목적함수 최적화 (Multi-Objective Optimization of a Dimpled Channel Using NSGA-II)

  • 이기돈;압두스 사마드;김광용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.113-116
    • /
    • 2008
  • This work presents numerical optimization for design of staggered arrays of dimples printed on opposite surfaces of a cooling channel with a fast and elitist Non-Dominated Sorting of Genetic Algorithm (NSGA-II) of multi-objective optimization. As Pareto optimal front produces a set of optimal solutions, the trends of objective functions with design variables are predicted by hybrid multi-objective evolutionary algorithm. The problem is defined by three non-dimensional geometric design variables composed of dimpled channel height, dimple print diameter, dimple spacing and dimple depth to maximize heat transfer rate compromising with pressure drop. Twenty designs generated by Latin hypercube sampling were evaluated by Reynolds-averaged Navier-Stokes solver and the evaluated objectives were used to construct Pareto optimal front through hybrid multi-objective evolutionary algorithm. The optimum designs were grouped by k-mean clustering technique and some of the clustered points were evaluated by flow analysis. With increase in dimple depth, heat transfer rate increases and at the same time pressure drop also increases, while opposite behavior is obtained for the dimple spacing. The heat transfer performance is related to the vertical motion of the flow and the reattachment length in the dimple.

  • PDF

지진하중을 받는 RC 박스터널의 확률론적 취약도 평가기법 (A probabilistic fragility evaluation method of a RC box tunnel subjected to earthquake loadings)

  • 허정원;리 타이손;강충현;곽기석;박인준
    • 한국터널지하공간학회 논문집
    • /
    • 제19권2호
    • /
    • pp.143-159
    • /
    • 2017
  • 지진하중으로 초래되는 지하터널 구조물의 손상에 대한 위험도를 예측하기 위해 이 논문에서 확률론적 취약도 평가절차를 개발하였다. 특히 지진취약도 평가에 필수 요소인 취약도곡선의 유도를 위하여 단순화된 방법론을 정립하는 데 중점을 두었다. 지반-구조물상호작용(SSI) 효과를 고려한 구조물의 동적응답거동을 추정하기 위해서 지중구조물에 대한 지반응답가속도법(GRAMBS)을 제안기법에 적용하였다. 또한, 푸시오버 해석을 통해 터널의 손상상태를 정의하고 라틴하이퍼큐브 샘플링(LHS) 기법을 사용하여 설계변수와 관련된 불확실성을 고려하였다. 적용된 기법의 개념을 보다 상세하게 설명하기 위하여 설계스펙트럼을 만족하도록 생성된 다수의 인공지진운동에 대해 수치해석을 수행하고 취약도곡선을 개발하였다. 두 매개변수 대수정규분포 함수로 지진 취약도곡선을 표현하는데, 여기서 두 매개변수인 중앙값과 대수표준편차는 최우추정(MLE)법을 사용하여 산정하였다.

강재 재료 불확실성을 고려한 I형 곡선 거더 교량의 경주 지진 기반 지진 취약도 분석 (Seismic Fragility Analysis based on Material Uncertainties of I-Shape Curved Steel Girder Bridge under Gyeongju Earthquake)

  • 전준태;주부석;손호영
    • 한국재난정보학회 논문집
    • /
    • 제17권4호
    • /
    • pp.747-754
    • /
    • 2021
  • 연구목적: 곡선 교량은 기하하적 특성으로 직선교량에 비해 복잡한 거동을 보이기 때문에 지진 안전성 평가가 반드시 이루어져야 한다. 본 연구에서는 곡선 거더를 갖는 교량의 강재 재료 특성의 불확실성을 고려한 지진 취약도 평가를 수행하였다. 연구방법: I형 곡선 거더를 갖는 교량의 유한요소 모델을 구축하였으며 선행연구에서 제시된 강재 특성의 통계적 매개변수를 이용하였다. 라틴 하이퍼큐브 기법을 이용하여 100개의 강재 재료 모델을 샘플링하였다. 경주지진의 지반가속도를 0.2g, 0.5g, 0.8g, 1.2g, 1.5g로 scale을 변화시켜 지진 취약도 평가를 수행하였다. 연구결과: 곡선거더의 지진 취약도 평가결과 한계상태가 190MPa일 때 0.03g 파괴가 시작되었으며 한계상태가 315MPa일 때 0.11g를 초과하면서 파괴가 시작되는 것으로 나타났다. 결론: 본 연구에서는 재료 불확실성을 고려한 지진 취약도 평가를 수행하였으며 추후 연구에서는 지진파의 불확실성과 재료의 불확실성을 동시에 고려한 지진 취약도 분석이 필요할 것으로 판단된다.

Multi-objective Optimization of a Laidback Fan Shaped Film-Cooling Hole Using Evolutionary Algorithm

  • Lee, Ki-Don;Husain, Afzal;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권2호
    • /
    • pp.150-159
    • /
    • 2010
  • Laidback fan shaped film-cooling hole is formulated numerically and optimized with the help of three-dimensional numerical analysis, surrogate methods, and the multi-objective evolutionary algorithm. As Pareto optimal front produces a set of optimal solutions, the trends of objective functions with design variables are predicted by hybrid multi-objective evolutionary algorithm. The problem is defined by four geometric design variables, the injection angle of the hole, the lateral expansion angle of the diffuser, the forward expansion angle of the hole, and the ratio of the length to the diameter of the hole, to maximize the film-cooling effectiveness compromising with the aerodynamic loss. The objective function values are numerically evaluated through Reynolds- averaged Navier-Stokes analysis at the designs that are selected through the Latin hypercube sampling method. Using these numerical simulation results, the Response Surface Approximation model are constructed for each objective function and a hybrid multi-objective evolutionary algorithm is applied to obtain the Pareto optimal front. The clustered points from Pareto optimal front were evaluated by flow analysis. These designs give enhanced objective function values in comparison with the experimental designs.

대용량 BLDC 전동기의 영구자석 형상 최적화를 통한 최적화 기법 연구 (A Study on the Optimization Strategy using Permanent Magnet Pole Shape Optimization of a Large Scale BLDC Motor)

  • 우성현;신판석;오진석;공영경;빈재구
    • 전기학회논문지
    • /
    • 제59권5호
    • /
    • pp.897-903
    • /
    • 2010
  • This paper presents a response surface method(RSM) with Latin Hypercube Sampling strategy, which is employed to optimize a magnet pole shape of large scale BLDC motor to minimize the cogging torque. The proposed LHS algorithm consists of the multi-objective Pareto optimization and (1+1) evolution strategy. The algorithm is compared with the uniform sampling point method in view points of computing time and convergence. In order to verify the developed algorithm, a 6 MW BLDC motor is simulated with 4 design parameters (arc length and 3 variables for magnet) and 4 constraints for minimizing of the cogging torque. The optimization procedure has two stages; the fist is to optimize the arc length of the PM and the second is to optimize the magnet pole shape by using the proposed hybrid algorithm. At the 3rd iteration, an optimal point is obtained, and the cogging torque of the optimized shape is converged to about 14% of the initial one. It means that 3 iterations aregood enough to obtain the optimal design parameters in the program.

이중구조팬의 Conic Winglet 최적설계 (Optimal Design for a Conic Winglet of a Dual Type Combined Fan)

  • 김진욱;김우택;류민형;조이상;조진수
    • 한국항공우주학회지
    • /
    • 제44권6호
    • /
    • pp.468-476
    • /
    • 2016
  • 본 연구에서는 이중구조를 갖는 팬의 날개 끝에서 발생하는 손실을 저감시키기 위하여 바깥 날개 끝 익형단면을 세 축으로 회전시키는 Conic winglet을 적용하였다. 손실을 계산하기 위하여 CFD 전산해석을 수행하였으며, 최소의 손실을 얻기 위하여 최적화를 수행하였다. 최적화 결과 Conic winglet은 바깥 날개 끝의 후단 부근에서 압력면 쪽으로 휘어진 형상을 보였으며 이 형상은 날개 끝에서 발생하는 전압력 손실을 3.24 % 저감시켰다.