• Title/Summary/Keyword: Latin-hypercube design

Search Result 109, Processing Time 0.019 seconds

Shape Optimization of a Rotating Cooling Channel with Pin-Fins (핀휜이 부착된 회전하는 냉각유로의 최적설계)

  • Moon, Mi-Ae;Husain, Afzal;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.703-714
    • /
    • 2010
  • This paper describes the design optimization of a rotating rectangular channel with staggered arrays of pin-fins by Kriging metamodeling technique. Two non-dimensional variables, the ratio of the height to the diameter of the pin-fins and the ratio of the spacing between the pin-fins to the diameter of the pin-fins are chosen as the design variables. The objective function that is a linear combination of heat transfer and friction loss related terms with a weighting factor is selected for the optimization. To construct the Kriging model, objective function values at 20 training points generated by Latin hypercube sampling are evaluated by a three-dimensional Reynolds-averaged Navier-Stokes (RANS) analysis method with the SST turbulence model. The Kriging model predicts the objective function value that agrees well with the value calculated by the RANS analysis at the optimum point. The objective function is reduced by 11% by the optimization of the channel.

A Case Study on the Cost Effectiveness Analysis of Depot Maintenance Using Simulation Model and Experimental Design (시뮬레이션 모형과 실험설계법을 활용한 창정비 비용대 효과 분석 사례)

  • Kim, Sung-Kon;Lee, Sang-Jin
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.3
    • /
    • pp.23-34
    • /
    • 2017
  • This paper is to study the simulation model of depot maintenance system that analyzes logistics supportability such as component availability and cost of target equipment. A depot maintenance system could repair or maintain multiple components simultaneously. The key performance indicators of this system are component availability, repair cycle time, and maintenance cost. The simulation model is based on the engine maintenance process of army aviation depot. This study combines the NOLH(Nearly Orthogonal Latin Hypercube) experimental design method, to composes 33 scenarios, with a multiple regression analysis to find out major factors that influence on key performance indicators. This study is significant in providing a cost-effectiveness analysis on depot maintenance system that is capable of maintaining multiple components at the same time.

Evaluation of Soil Stiffness Variability Effects on Soil-Structure Interaction Response of Nuclear Power Plant Structure (지반강성의 변동성이 원전구조물의 지반-구조물 상호작용 응답에 미치는 영향 분석)

  • Kim, Jae Min;Noh, Tae Yong;Huh, Jungwon;Kim, Moon Soo;Hyun, Chang Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.63-74
    • /
    • 2015
  • This study investigated the influence of probabilistic variability in stiffness and nonlinearity of soil on response of nuclear power plant (NPP) structure subjected to seismic loads considering the soil-structure interaction (SSI). Both deterministic and probabilistic methods have been employed to evaluate the dynamic responses of the structure. For the deterministic method, $SRP_{min}$ method given in USNRC SRP 3.7.2(2013) (envelope of responses using three shear modulus profiles of lower bound($G_{LB}$), best estimate($G_{BE}$) and upper bound($G_{UB}$)) and $SRP_{max}$ method (envelope of responses by more than three ground profiles within range of $G_{LB}{\leq}G{\leq}G_{UB}$) have been considered. The probabilistic method uses the Latin Hypercube Sampling (LHS) that can capture probabilistic feature of soil stiffness defined by the median and the standard deviation. These analysis results indicated that 1) number of samples shall be larger than 60 to apply the probabilistic approach in SSI analysis and 2) in-structure response spectra using equivalent linear soil profiles considering the nonlinear behavior of soil medium can be larger than those based on low-strain soil profiles.

A Long-term Durability Prediction for RC Structures Exposed to Carbonation Using Probabilistic Approach (확률론적 기법을 이용한 탄산화 RC 구조물의 내구성 예측)

  • Jung, Hyun-Jun;Kim, Gyu-Seon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.119-127
    • /
    • 2010
  • This paper provides a new approach for durability prediction of reinforced concrete structures exposed to carbonation. In this method, the prediction can be updated successively by a Bayes' theorem when additional data are available. The stochastic properties of model parameters are explicitly taken into account in the model. To simplify the procedure of the model, the probability of the durability limit is determined based on the samples obtained from the Latin Hypercube Sampling(LHS) technique. The new method may be very useful in design of important concrete structures and help to predict the remaining service life of existing concrete structures which have been monitored. For using the new method, in which the prior distribution is developed to represent the uncertainties of the carbonation velocity using data of concrete structures(3700 specimens) in Korea and the likelihood function is used to monitor in-situ data. The posterior distribution is obtained by combining a prior distribution and a likelihood function. Efficiency of the LHS technique for simulation was confirmed through a comparison between the LHS and the Monte Calro Simulation(MCS) technique.

Rational Building Energy Assessment using Global Sensitivity Analysis (전역 민감도 분석을 이용한 건물 에너지 성능평가의 합리적 개선)

  • Yoo, Young-Seo;Yi, Dong-Hyuk;Kim, Sun-Sook;Park, Cheol-Soo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.5
    • /
    • pp.177-185
    • /
    • 2020
  • The building energy performance indicator, called Energy Performance Index (EPI), has been used for the past decades in South Korea. It has a list of design variables assigned with weighting factors (a, b). Unfortunately, the current EPI method is not performance-based but very close to a prescriptive rating. With this in mind, this study aims to propose a new performance-based EPI method. For this purpose, a global sensitivity analysis method, Sobol, is employed. The Sobol method is suitable for complex nonlinear models and can decompose all the output variance due to every input. The Sobol sensitivity index of each variable is defined as 0 to 1 (0 to 100%), and the sum of all sensitivity indices is equal to 1 (100%). In this study, an office building was modeled using EnergyPlus and then the Latin Hypercube Sampling (LHS) was conducted to generate a surrogate model to EnergyPlus. The sensitivity index was suggested to replace weight (a) in the existing EPI. In addition, the discrete weight (b) in the existing EPI was replaced by a set of continuous regression functions. Due to the introduction of the sensitivity index and the continuous regression functions, the new proposed approach can provide far more accurate outcome than the existing EPI (R2: 0.83 vs. R2: 0.01 for cooling, R2: 0.66 vs. R2: 0.01 for total energy). The new proposed approach proves to be more rational, objective and performance-based than the existing EPI method.

Multi-condition optimization and experimental verification of impeller for a marine centrifugal pump

  • Wang, Kai;Luo, Guangzhao;Li, Yu;Xia, Ruichao;Liu, Houlin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.71-84
    • /
    • 2020
  • In order to improve the performance of marine centrifugal pump, a centrifugal pump whose specific speed is 66.7 was selected for the research. Outlet diameter D2, outlet width b2, blade outlet angle β2, blade wrap φ and blade number z of the impeller were chosen as the variables. The maximum weighted average efficiency and the minimum vibration intensity at the base were calculated as objectives. Based on the Latin Hypercube method, the impeller was numerically optimized. The numerical results show that after optimization, the amplitudes of pressure fluctuation on the main frequency at different monitoring points decrease in varying degrees. The radial force on impeller decreases obviously under off-design flow rates and is more symmetrical during the operation of the pump. The variation of the axial force is relatively small, which has no obvious relationship with the rotating angle of the impeller. The energy performance and vibration experiment was performed for verifying. The test results show that the weighted average efficiency under 0.8Qd, 1.0Qd and 1.2Qd increases by 4.3% after optimization. The maximal vibration intensity at M1-M4 on the pump base reduced from 0.36 mm/s to 0.25 mm/s, decreasing by 30.5%. In addition, the vibration velocities of bracket in pump side and outlet flange also have significant reductions.

A SE Approach for Real-Time NPP Response Prediction under CEA Withdrawal Accident Conditions

  • Felix Isuwa, Wapachi;Aya, Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.75-93
    • /
    • 2022
  • Machine learning (ML) data-driven meta-model is proposed as a surrogate model to reduce the excessive computational cost of the physics-based model and facilitate the real-time prediction of a nuclear power plant's transient response. To forecast the transient response three machine learning (ML) meta-models based on recurrent neural networks (RNNs); specifically, Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), and a sequence combination of Convolutional Neural Network (CNN) and LSTM are developed. The chosen accident scenario is a control element assembly withdrawal at power concurrent with the Loss Of Offsite Power (LOOP). The transient response was obtained using the best estimate thermal hydraulics code, MARS-KS, and cross-validated against the Design and control document (DCD). DAKOTA software is loosely coupled with MARS-KS code via a python interface to perform the Best Estimate Plus Uncertainty Quantification (BEPU) analysis and generate a time series database of the system response to train, test and validate the ML meta-models. Key uncertain parameters identified as required by the CASU methodology were propagated using the non-parametric Monte-Carlo (MC) random propagation and Latin Hypercube Sampling technique until a statistically significant database (181 samples) as required by Wilk's fifth order is achieved with 95% probability and 95% confidence level. The three ML RNN models were built and optimized with the help of the Talos tool and demonstrated excellent performance in forecasting the most probable NPP transient response. This research was guided by the Systems Engineering (SE) approach for the systematic and efficient planning and execution of the research.

LMU Design Optimization for the Float-Over Installation of Floating Offshore Platforms (부유식 해양구조물의 플로트오버 설치용 LMU 최적설계)

  • Kim, Hyun-Seok;Park, Byoungjae;Sung, Hong Gun;Lee, Kangsu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.43-50
    • /
    • 2021
  • A Leg Mating Unit (LMU) is a device utilized during the float-over installation of offshore structures that include hyperelastic pads and mating part. The hyperelastic pads absorb the loads, whereas the mating part works as guidance between topside and supporting structures during the mating sequence of float-over installation. In this study, the design optimization of an LMU for the float-over installation of floating-type offshore structures is conducted to enhance the performance and to satisfy the requirements defined by classification society regulations. The initial dimensions of the LMU are referred to the dimensions of those used in fixed-type float-over installation because only the location and the number of LMUs are known. The two-parameter Mooney-Rivlin model is adopted to describe the hyperelastic pads under given material parameters. Geometric variables, such as the thickness, height, and width of members, as well as configuration variables, such as the angle and number of members, are defined as design variables and are parameterized. A sampling-based design sensitivity analysis based on latin hypercube sampling method is performed to filter the important design variables. The design optimization problem is formulated to minimize the total mass of the LMU under maximum von Mises stress and reaction force constraints.

Reliability of mortar filling layer void length in in-service ballastless track-bridge system of HSR

  • Binbin He;Sheng Wen;Yulin Feng;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.91-102
    • /
    • 2023
  • To study the evaluation standard and control limit of mortar filling layer void length, in this paper, the train sub-model was developed by MATLAB and the track-bridge sub-model considering the mortar filling layer void was established by ANSYS. The two sub-models were assembled into a train-track-bridge coupling dynamic model through the wheel-rail contact relationship, and the validity was corroborated by the coupling dynamic model with the literature model. Considering the randomness of fastening stiffness, mortar elastic modulus, length of mortar filling layer void, and pier settlement, the test points were designed by the Box-Behnken method based on Design-Expert software. The coupled dynamic model was calculated, and the support vector regression (SVR) nonlinear mapping model of the wheel-rail system was established. The learning, prediction, and verification were carried out. Finally, the reliable probability of the amplification coefficient distribution of the response index of the train and structure in different ranges was obtained based on the SVR nonlinear mapping model and Latin hypercube sampling method. The limit of the length of the mortar filling layer void was, thus, obtained. The results show that the SVR nonlinear mapping model developed in this paper has a high fitting accuracy of 0.993, and the computational efficiency is significantly improved by 99.86%. It can be used to calculate the dynamic response of the wheel-rail system. The length of the mortar filling layer void significantly affects the wheel-rail vertical force, wheel weight load reduction ratio, rail vertical displacement, and track plate vertical displacement. The dynamic response of the track structure has a more significant effect on the limit value of the length of the mortar filling layer void than the dynamic response of the vehicle, and the rail vertical displacement is the most obvious. At 250 km/h - 350 km/h train running speed, the limit values of grade I, II, and III of the lengths of the mortar filling layer void are 3.932 m, 4.337 m, and 4.766 m, respectively. The results can provide some reference for the long-term service performance reliability of the ballastless track-bridge system of HRS.