• Title/Summary/Keyword: Lathe cutting process

Search Result 70, Processing Time 0.022 seconds

내장형 절삭력센서와 AE 센서를 이용한 인-프로세스 공구파괴 검출에 관한 연구

  • 최덕기;박동삼;주종남;이장무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.344-348
    • /
    • 1992
  • This paper presents a new methodology for on-line tool breakage detection by sensor fusion concept of an acoustic-emission (AE) sensor. A built-in piezoelectric force sensor was used to measure cutting force instead of a tool dynamometer to preserve the machine tool dynamics. he sensor was inserted in the tool turret housing of an NC lathe. FEM analysis was carried out to locate the most sensitive position for the sensor. When a tool is broken, the explicit changes of signals' pattern take place. A burst-type AE signal increases abruptly. Followingly, a cutting force drops significantly. Therefore a burst of AE signal is used as a triggering signal to inspect the following cutting force. Significant drop of cutting force is utilized to detect tool breakage. The algorithm was implemented in a DSP board for in-process tool breakage detection. The proposed monitoring system was capable of a good applicable tool breakage detection.

Improvement of the Lathe Tool-post for the Suppression of Chatter. (채터 발생억제를 위한 선박 공구대의 개선에 관한 연구)

  • Jeong, Jun-Gi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.1
    • /
    • pp.53-62
    • /
    • 1990
  • High speed and heavy cutting performed for improving the surface quality and productivity, are often prevented due to chatter phenomena. Chatter is a violent relative vibration between workpiece and tool in machining of metals, and is an important limiting factor of production rate and surface quality, and reduces the tool life and the dynamic performance of machine tool itself. In this study, in order to suppress the chatter, a modified tool-post combined with the spring and damper was designed and used in the actual cutting test. The results of this study are summerized as follows; The spring and damper adopted in the modified tool-post have the suppressing effects of chatter, and there exists an optimum combination between spring constant and damping ratio.

  • PDF

A Study on Real-time Monitoing of Tool Fracture in Turning (선삭공정시 공구파손의 실시간 검출에 관한 연구)

  • Park, D.K.;Chu, C.N.;Lee, J.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.130-143
    • /
    • 1995
  • This paper presents a new methodology for on-line tool breadage detection by sensor fusion of an acoustic emission (AE) sensor and a built-in force sensor. A built-in piezoelectric force sensor, instead of a tool dynamometer, was used to measure the cutting force without altering the machine tool dynamics. The sensor was inserted in the tool turret housing of an NC lathe. FEM analysis was carried out to locate the most sensitive position for the sensor. A burst of AE signal was used as a triggering signal to inspect the cutting force. A sighificant drop of cutting force was utilized to detect tool breakage. The algorithm was implemented on a DSP board for in-process tool breakage detection. Experiental works showed an excellent monitoring capability of the proposed tool breakage detection system.

  • PDF

Prediction the surface profile in the single point diamond turning (정밀 선삭가공에서의 표먼거칠기곡선 예측)

  • Yoon, Young-Sik;Lee, Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.189-198
    • /
    • 1994
  • The achievable machining accuracy depends upon the level of the micro-engineering, and the today's accuracy targets are dimensional tolerances in the order of 10nm and surface roughness in the order of 1nm. Such requirements cannot be satisfied by the conventional machining processes. Single point diamond turning is the one of new techniques which can produce the parts with such accuracy limits. The aims of this thesis are to get a better understanding of the complex cutting process with a diamond tool and, consequently, to develope a predicting model of a turned surface profile. In order to predict the turned surface profile, a numerical model has been developed. By means of this model, the influence of the operational settings-the material properties of the workpiece, the geometry of the cutting tool and the dynamic behaviour of the lathe-and their influences via the cutting forces upon the surface roughness have been estimated.

  • PDF

Monitoring of Eccentric Machining Error and Cutting Force Variation using Cylindrical Capacity Spindle Sensor on CNC Turning (CNC선삭시 주축변위센서를 이용한 편심 가공오차와 절삭력 변화특성의 검출)

  • Maeng Heeyoung;Kim Sungdong
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.300-306
    • /
    • 2005
  • This paper presents the methodology for measuring eccentricity of the machined cylindrical part using CCS(cylindrical capacitance spindle sensor) signal in the CNC turning process. We use capacitance type sensor to take full advantage of averaging effect by using large capacitance area to encompass the whole side of a sensor. The intentionally proposed initial eccentricity is applied to the experimental testpieces, and their resultant relationships between CCS orbits and eccentricities are investigated. As a result, the possibility as a automatic detection apparatus for the CNC lathe is considered based on the linearities of CCS signal and magnitude of eccentricity of machined cylindrical surfaces.

  • PDF

Ball Screw Cutting of Hardned Steel (고경도강의 나사선삭)

  • 황동환;박철우;김대은;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.37-41
    • /
    • 1993
  • ball screw is a critical machine component which dictates the precison of a given machine tool. The conventional manufacturing method requires the heat treated ball screw to be ground to its final dimensions. This study looks into the the feasibility of replacing the grinding process with a simpler process, namely threading on NC lathe. The purpose is to reduce the capital investment as well as production time in the manufacture of ball screws. Ceramics and CBN cutting tools are compared with respect to their ability to machine hardened steel. It is shown that CBN tools can be successfully utilized to machine precision ball screws with superior suface qualities.

  • PDF

Study on Fine-shaft in Turning for Thrust Force Control (배분력 제어를 통한 미세축 선삭가공에 관한 연구)

  • Kim, Gue-Tae;Kim, Won-Il;Kim, Sang-Hyun;Kim, Kyeong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.88-93
    • /
    • 2012
  • In this study, Machining fine shaft was examined by Lathe. method is proposed to control the thrust force to 0. through relationship between the cutting depth and the thrust force in turning, fine-shaft of less than 0.1mm diameter in turning is confirmed experimentally. also we propose practical expression to control thrust force in turning Through to change the approach angle, optimal tool design would be possible in turning.

A Study on the High Speed of Cutting Tool Feed System for the Noncircular Machining (비진원 가공용 공구 이송장치의 고속화 성능에 관한 연구)

  • 김성식
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.96-103
    • /
    • 1998
  • With the advance of processing technology , so as to spare fuel, piston heads used in automobile reciprocating engine have complex 3-dimension, with respect to shape such as ovality, profile, eccentricity, offset, recess. Therefore, coming out of the existing process work used master cam. the process work is performed using a CNC lathe. For a precision processing, the processing work is need to make study of high speed feed gear synchronized with the rotative speed of main spindle. And then the high speed feeding system must maintain high dynamic stiffness, high speed and high positioning accuracy . In this paper, in order to achieve high speed cutting tool feeding. The linear brushless DC motor is used for satisfying this process work. The ball bush and turicite is used as the guidance of the feed gear system. Also linear encoders, digital servo amplifiers and controller are used for controlling driving motor. This paper presents the design and simulation of the new tool feed system for noncircular machining.

  • PDF

Experimental Investigation of Concave and Convex Micro-Textures for Improving Anti-Adhesion Property of Cutting Tool in Dry Finish Cutting

  • Kang, Zhengyang;Fu, Yonghong;Chen, Yun;Ji, Jinghu;Fu, Hao;Wang, Shulin;Li, Rui
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.583-591
    • /
    • 2018
  • Tool-chip adhesion impacts on cutting performance significantly, especially in finish cutting process. To promote cutting tools' anti-adhesion property, the concave micro-grooves texture (MGT) and convex volcano-like texture (VLT) were fabricated separately on lathe tools' rake faces by laser surface texturing (LST). Various orientations of MGT and different area densities (9% and 48%) and regions (partial and full) of VLT were considered in textured patterns designing. The following orthogonal cutting experiments, machining of aluminum alloy 5038, analyzed tools' performances including cutting force, cutting stability, chip shape, rake face adhesion and abrasion. It indicated that under dry finish cutting conditions, MGT contributed to cutting stability and low cutting forces, meanwhile friction and normal force reduced by around 15% and 10%, respectively with a weak correlation to the grooves' orientation. High density VLT tools, on the other hand, presented an obvious anti-adhesion property. A $5{\mu}m$ reduction of crater wear's depth can be observed on textured rake faces after long length cutting and textured rake faces presented half size of BUE regions comparing to the flat tool, however, once the texture morphologies were filled or worn, the anti-adhesion effect could be invalid. The bearing ratio curve was employed to analysis tool-chip contact and durability of textured surfaces contributing to a better understanding of anti-adhesion and enhanced durability of the textured tools.

Development of Micropositioning System Using a Magnetostrictive Material (자기변형재료를 이용한 마이크로포지쇼닝 시스템의 개발)

  • 박영우;원문철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.117-120
    • /
    • 1995
  • In this machining process, variation in cutting forces results in relative displacements between the tool and the workpiece leading to tool vibration. Also there is a demand to change the depth of cut very frequently. A soluion for both cases is to develop a system which has the ability to reposition a cutting tool to a very small level, i.e., micron. This ppaper presents the development of a micropositioning system (MPS) using a magnetostrictive material. The deveoped MPS is implemented to a lathe and subjected to static and machining test. The results show that the MPS has good potential for machining application

  • PDF