• Title/Summary/Keyword: Lathe cutting process

Search Result 70, Processing Time 0.019 seconds

A Study on the Effective Cutting Conditions of Cage Motor Rotor Considering Production Rate ( I ) (생산효율을 고려한 상자형모터 회전자의 유효절삭조건에 관한 연구(I))

  • 김희남;박태문;하상용;이주상;김순채
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.1
    • /
    • pp.9-19
    • /
    • 1995
  • The recent development of NC lathe and machining renter have enabled automatic or unmanned manufacturing system for the improvement of production rate. And if you want to introduce automatic or unmanned manufacturing system into the cutting process of cage motor rotor, the selections of effective cutting conditions, rational tool grades and tool angles are necessary. As a result, the selection of cutting conditions, tool grades and tool angles are important factors to production rate.

  • PDF

A Study on the Effective Cutting Conditions of Cage Motor Rotor Considering Production Rate (II) (생산효율을 고려한 상자형모터회전자의 유효절삭조건에 관한 연구(II))

  • 김희남;이해종;신광호;하상용
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.2
    • /
    • pp.46-55
    • /
    • 1995
  • The recent development of NC lathe and machining center have enabled automatic or unmanned manufacturing system for the improvement of production rate. And if you want to introduce automatic or unmanned manufacturing system into the cutting process of cage motor rotor, the selections of effective cutting conditions, rational tool grades and tool angles are necessary. As a result, the selection of cutting conditions, tool grades and tool angles are important factors to production rate.

  • PDF

The Process Factor Characteristics and Surface Roughness Prediction of Engineering Plastics in CNC Turning (엔지니어링 플라스틱의 CNC 선반가공에서 공정변수 특성 및 표면거칠기 예측)

  • Lee, Jung-Hee;Eom, Seong-Jin;Kwak, Gil-Dong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.73-79
    • /
    • 2020
  • Although engineering plastics that are light-weight and have excellent mechanical performance have been widely applied in various industries in place of steel structures to reduce the burden of cost and time, there have been few studies related to their surface roughness. This study aims to evaluate the optimal effects of feed rate, cutting speed, and depth of cut as cutting parameters as well as nose angle on the surface characteristics of MC nylon in CNC lathe machining. To determine the best conditions under different nose radii, the experiments were performed based on the Taguchi L9(34) orthogonal array method, in which the resulting data was analyzed using the S/N ratio and ANOVA. Results indicate that the most significant contribution was feed rate followed by nose angle and cutting speed, whereas the depth of cut did not influence the performance. This study demonstrates that the suggested method for improving the surface finishing of MC nylon is efficient compared with results obtained from experimentation and prediction.

A Study on Real-time Tool Breakage Monitoring on CNC Lathe using Fusion Sensor (다중 센서를 이용한 CNC 선반에서의 실시간 공구파손 감시에 관한 연구)

  • An, Young-Jin;Kim, Jae-Yeol
    • Tribology and Lubricants
    • /
    • v.28 no.3
    • /
    • pp.130-135
    • /
    • 2012
  • This study presents a new methodology for realtime tool breakage detection by sensor fusion concept of two hall sensor and an acoustic emission (AE) sensor. Spindle induction motor torque of CNC Lathe during machining is estimated by two hall sensor. Estimated motor torque instead of a tool dynamometer was used to measure the cutting torque and tool breakage detection. A burst of AE signal was used as a triggering signal to inspect the cutting torque. A significant drop of cutting torque was utilized to detect tool breakage. The algorithm was implemented on a NI DAQ (Data Acquisition) board for in-process tool breakage detection. The result of experiment showed an excellent monitoring capability of the proposed tool breakage detection system. This system is available tool breakage monitoring through internet also provides this system's user with current cutting torque of induction motor.

Model-Based Monitoring of the Turning Force (모델에 근거한 선삭력 모니터링)

  • 허건수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.11-15
    • /
    • 1999
  • Monitoring of the cutting force signals in cutting process has been well emphasized in machine tool communities. Although the cutting force can be directly measured by a tool dynamometer, this method is not always feasible because of high cost and limitations in setup. In this paper an indirect cutting force monitoring system is developed so that the cutting force in turning process is estimated based on a AC spindle drive model. This monitoring system considers the cutting force as a disturbance input to the spindle drive and estimates the cutting force based on the inverse dynamic model. The inverse dynamic model represents the dynamic relation between the cutting force, the motor torque and the motor power. The proposed monitoring system is realized on a CNC lathe and its estimation performance is evaluated experimentally.

  • PDF

A Study on the Machining Characteristics of SCM415 Steel with Small Deep Inner Diameter Holes Using CNC Automatic Lathes (CNC 자동선반을 이용한 SCM415강의 소형 깊은 내경홀 가공 특성 연구)

  • Choi, Chul-Woong;Kim, Jin-su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.23-30
    • /
    • 2022
  • Small-scale production is increasing, and the manufacturing industry is gradually changing into a smart manufacturing industry. Therefore, research on securing optimal cutting conditions for factors affecting machining precision during cutting is very important. Therefore, the purpose of this study is to After machining the inner diameter hole of SCM415 steel with a cermet tool on a CNC automatic lathe, the surface roughness, dimensional accuracy, and dimensional straightness are measured according to the feed rate to analyze the machining characteristics and suggest optimal cutting conditions. The test material was cut using a cermet tool for secondary cutting after a round bar with a diameter of 20 mm was mounted on a CNC automatic lathe. The cutting length was fixed at 0.5 mm, and the cutting speed was fixed at 3200 rpm. When the feed rate was changed to 0.05, 0.1, and 0.15 mm/rev, the respective surface roughness during the 15th test was measured. Consequently, The lower the feed rate, the better is the surface roughness. In addition, the optimum cutting conditions for SCM415 steel were observed to be the most ideal cutting conditions than the condition of 0.05 mm/rev at a cutting speed of 3,200 rpm and a feed rate of 0.1 mm/rev.

Development of Virtual Lathe System Using Java 3D (Java 3D를 이용한 가상 선반 시스템의 개발)

  • Lee, J.H.;Kim, K.C.;Lee, J.;Lee, J.T.;Park, J.Y.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • We developed an on-line lathe simulator which can be used for a CAM education on the internet. Previously, VRML or static images such as JPG have been commonly used to achieve the same goal. With the 3D tool like VRML, it was possible to describe the movement of 3D object effectively. However, G-code based modeling and real-time visualization for the cutting process including parts being machined could not be accomplished. By using the simulator, we can machine a part with G-code input from a user or modeler, and parts being machined can be visualized in 2D as well as 3D. The developed system is based on EMCO lathe from Eshed and can be used through a web browser.

  • PDF

A Behavior of AE Signal on the Cutting Conditons (절삭조건에 따른 AE 신호의 거동)

  • 원종식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.59-64
    • /
    • 1997
  • This paper investigates the relationship between cutting conditions and Acoustic Emission(AE) signals; AEavg, AErms, AEmode, as the base working to monitor the tool wear with in-process. For this purpose, cutting tests were conducted on a CNC lathe with comprehensive cutting conditions.. It is known that AEavg and AErms are proportionaly increased as the increasing of cutting velocity and depth of cut respectively. It is also known that AEmode among three kinds of AE signals may be applied for in-process monitoring to make the self diagnosis system because of its stability to the variation of cutting condition.

  • PDF

A Study on the Monitoring of multi-Cutting Troubles Using an AE Sensor (AE센서에 의한 다중 절삭트러블 감시에 관한 연구)

  • 원종식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.39-45
    • /
    • 2000
  • This paper describes the fundamental investigations on the in-process monitoring techniques focused on Acoustic Emission(AE) based on analytical method. Experiments were conducted on a CNC lathe using conventional carbide insert tools under various cutting conditions. As the result of this study a suggestion is given about the multi-purpose use of AE-signals detected with a single sensor for the monitoring of tool wear, built-up edge and chatter vibration in turning process.

  • PDF

Cutting Force Regulation in Turning Using Sliding Mode Control (슬라이딩 모드 제어기를 응용한 선삭공정 절삭력 제어)

  • 박영빈;김종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.605-609
    • /
    • 1996
  • Continuous sliding mode control is applied to turning process for cutting force regulation. The highest feedrate compatible with the allowable cutting force is applied in rough cutting process such that maximum productivity is ensured and tool breakage is avoided. The programmed feedrate is overridden after the control algorithm is carried out. However, most CNC lathe manufacturers offer limited number of data bits far feedrate override, thus resulting in nonlinear behavior of the machine tools. Such nonlinearity brings “quantized” effect, and the optimal faedrate is rounded off before being fed into the CNC system. To compensate for this problem, continuous sliding mode control is applied. Conventional switching control law at a sliding surface is replaced by a smooth control interpolation in a selected boundary layer to avoid the excitation of high-frequency dynamics. Simulation results are presented in comparison with those obtained by applying adaptive control.

  • PDF