• Title/Summary/Keyword: Latex modified concrete(LMC)

Search Result 62, Processing Time 0.021 seconds

Chemical Attack and Carbonation Properties of Latex-Modified Concrete Using Blast-furnace Slag (고로(高爐)슬래그 미분말(微粉末)을 사용(使用)한 라텍스개질(改質) 콘크리트의 화학적(化學的) 침식(侵蝕) 및 탄산화 특성(特性))

  • Hong, Chang-Woo;Jeong, Won-Kyong;Sim, Do-Sik
    • Resources Recycling
    • /
    • v.17 no.5
    • /
    • pp.11-18
    • /
    • 2008
  • The purpose of this study was to evaluate the effects of blast-furnace slag on chemical attack and carbonation of latex-modified concrete (LMC) and ordinary portland cement concrete as slag contents. Main experimental variables were performed latex contents (0%, 15%) and slag contents (0%, 30%, 50%). The compressive strengths, chemical attacks resistance and carbonation depth were measured to analyze the characteristic of the developed LMC and BS-LMC(latex-modified concrete added blast-furnace slag) on hardened concrete. The test results showed that compressive strength of BS-LMC with blast-furnace slag content 30% was quite similar to it of OPC without slag content. The structural quality deterioration was concerned when blast slag content was up to 50%. However, carbonation restraint of BS-LMC with blast-furnace slag 30% was bigger then that of opc. Also, the effects of added latex on OPC and BS-LMC were increased on the carbonation restraint and chemical attacks resistance.

Prediction of Corrosion Threshold Reached at Steel Reinforcement Embedded in Latex Modified Concrete with Mix Proportion Factor (배합변수에 따른 라텍스 개질 콘크리트 내에 정착된 보강철근의 부식개시시기 예측)

  • Park, Seung-Ki;Won, Jong-Pil;Park, Chan-Gi;Kim, Jong-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.6
    • /
    • pp.49-60
    • /
    • 2008
  • This study were predicted the corrosion threshold reached at steel reinforcement in latex modified concrete(LMC) which were applied the agricultural hydraulic concrete structures. Accelerated testing was accomplished to the evaluate the diffusion coefficient of LMC mix, and the time dependent constants of diffusion. Also, the average chloride diffusion coefficient was estimated. From the average chloride ion diffusion coefficient, the time which critical chloride contents at depth of reinforcement steel was estimated. Test results indicated that the corrosion threshold reached at reinforcement in LMC were effected on the mix proportion factor including cement contents, latex content, and water-cement ratio. Especially, the average chloride diffusion coefficient, the corrosion threshold reached at reinforcement in LMC were affected by the all mix proportion factor.

Properties of Latex Modified Concrete by Binder Content and Effect on Chloride Ion Diffusion (라텍스 개질 콘크리트(LMC)의 결합재량에 따른 배합 및 염화물 이온 확산 특성)

  • Park, Sung-Gi;Won, Jong-Pil;Park, Chan-Gi;Lee, Sang-Woo;Sung, Sang-Kyoung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.949-952
    • /
    • 2008
  • The latex modified concrete(LMC) was adds latex in the plain concrete as the latex has increase the durability of concrete. But it is added in LMC manufacture, which is a high price compares with different material and there is a weak point where the construction expense is very high. So, this study are decided mix proportion from the scope where the security strong point of LMC is possible and reduced the material expense by control the latex contents. and these mix proportions are estimated the chloride ion diffusion. The results of study appear that it can reduced the latex content until the $5{\sim}10$% of cements, and these mixtures are very low chloride ion diffusion.

  • PDF

Permeability Property of Latex Modified Concrete with Cement Types (시멘트 종류별 라텍스 개질 콘크리트의 투수특성)

  • 위진우;정원경;홍창우;김동호;최삼룡;윤경구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1023-1028
    • /
    • 2001
  • This study focused on the investigation of strength development and permeability of LMC(latex modified concrete) and RSLMC(rapid-setting cement latex modified concrete) as the latex content, cement types and w/c ratio variated. The compressive strength of latex modified concrete decreased slightly and the flexural strength increased quitely at the latex content of 15%. This may due to the flexibility of latex filled in voids and interconnections of hydrated cement and aggregates by a film of latex particles, respectively. The permeability test results showed that the permeability of LMC was considerably lower than that of conventional concrete. In the RSLMC's tests of permeability to chloride ion indicated very low permeability at an early age, which nay be due to the early formation of needle-shape ettringites and latex film.

  • PDF

Strength and Permeability Properties of SB Latex Modified Concrete for Cement Types (시멘트 종류에 따른 SB 라텍스 개질 콘크리트의 강도 및 투수특성)

  • Lee, Bong-Hak;Hong, Chang-Woo;Lee, Joo-Hyung;Kim, Dong-Ho
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.317-324
    • /
    • 2001
  • This study focused on the investigation of strength development and permeability of LMC(Latex Modified Concrete) and RSLMC(Rapid-Setting Cement Latex Modified Concrete) as the latex content, cement types and w/c ratio changed. The compressive strength of latex modified concrete decreased slightly and the flexural strength increased quitely at 15% of latex content. This may be due to the flexibility of latex filled in voids and interconnections of hydrated cement and aggregates by a film of latex particles, respectively. The permeability test results showed that the permeability of LMC was considerably lower than that of conventional concrete. Results of chloride permeability test, for RSLMC indicated very low at an early age caused by the early formation of needle-shape ettringites and latex film.

  • PDF

Fracture Behavior of Reinforced Concrete Beams Repaired by Latex-Modified Concrete (LMC로 보강된 철근콘크리트 보의 파괴거동)

  • 김성환;정원경;김기헌;김동호;윤경구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.475-480
    • /
    • 2003
  • Latex modification of concrete provides the material with higher flexural strength. This increase in flexural strength can attribute to the crack-arresting action of polymer in concrete, and also to the bonding they provide between the matrix and aggregates. This experimental study presents the fracture behavior of 12 flexural reinforced concrete beams repaired or strengthened by latex-modified concrete with the main experimental variables such as overlay thickness, strength thickness, and shear reinforcement. The results are as follow: All beam specimens having shear reinforcement were failed by delamination rupture at concrete interface at about 80% of ultimate loading after flexural cracking. All specimens overlayed and strengthened by latex-modified concrete (LMC) showed higher ultimate flexural strength than OPC control specimen, but lower than LMC control specimen. This increase in flexural strength could attribute to the high bonding they provide between the matrix and aggregates. All specimens except two shear unreinforced showed quite similar and consistent displacement behavior. The effect of overlay and strength thickness on the load-displacement relationship were a small at this study.

  • PDF

Early-Age and Restrained Shrinkage of Very-Early Strength Latex Modified Concrete (초속경 라텍스개질 콘크리트의 초기수축 및 구속건조수축)

  • Choi, Pan-Gil;Kim, Young-Gon;Sim, Do-Sic;Lee, Bong-Hak
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.49-56
    • /
    • 2005
  • Recently, very-early strength latex-modified concrete(below ; VES-LMC) has been developed for repairing and overlaying the old concrete bridge deck. VES-LMC provides the advantage of very-early-strength, as well as high flexural strength, bond strength, durability, resistance to corrosion, reduced water permeability and resistance to damage from freeze-thaw cycles. The compressive and flexural strength of VES-LMC are 21 MPa and 4.5 MPa at 3 hours after concrete placing, respectively. However, VES-LMC would have a relatively large shrinkage at early-age because of reduced water-cement ratio, big water self-dissipation, and rapid hydration reaction. Therefore, the purpose of this study was to evaluate the early-age and restrained shrinkage of VES-LMC, having an experimental variables such as latex contents and cement types. The latex contents included 0%, 5%, 10%, 15% and 20%, and the cement types included ordinary portland cement and very-early strength cement.

  • PDF

Strength Development Properties of Latex Modified Concrete For New Concrete Bridge Deck Overlay (신설 콘크리트 교면 덧씌우기를 위한 라텍스 개질 콘크리트의 강도발현 특성)

  • Yun, Kyong-Ku;Kim, Ki-Heoun;Lee, Joo-Hyung;Hong, Chang-Woo;Kim, Dong-Ho
    • International Journal of Highway Engineering
    • /
    • v.3 no.3 s.9
    • /
    • pp.135-146
    • /
    • 2001
  • This study focused on the investigation of compressive and flexural strengths development, and bond strength of latex modified concrete in order to validate the feasibility of application into concrete bridge deck overlay. Pull-out bond test was used for evaluating the bond strength of latex modified concrete to substrate. The main experimental variables were latex-cement ratio, surface preparation and moisture levels. The compressive strength of latex modified concrete decreased slightly and the flexural strength increased as the latex content increased from 5% to 20%. This might be due to the flexibility latex filled in voids and interconnections of hydrated cement and aggregates by a film of latex particles, respectively. In general, increasing the amount of latex will produce concrete with increased tensile and flexural strength and lower modulus of elasticity. Significant improvements in bond strength between new and existing concrete were achieved through the modification of the new concrete bridge deck overlay by latex polymers. The effect of surface preparation on bond of latex modified concrete to conventional concrete were significant at the conditions by sand paper and wire brush. A better bond could be achieved by rough surface rather than smooth. The saturated condition of surface is the most appropriate moisture level among the considered followed by dry condition and wet condition.

  • PDF

Properties of Plastic Shrinkage Crack Occurrence on The LMC Bridge Deck Overlays (LMC(Latex Modified Concrete) 교면포장에서의 소성수축 균열발생 특성)

  • Park, Sung-Ki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.265-268
    • /
    • 2004
  • Plastic shrinkage cracking is a major concern for concrete, especially for flat structures as highway pavement, bridge deck slabs, and bridge deck pavement. LMC(Latex Modified Concrete) be used mainly for bridge deck overlays, so occurrence possibility of plastic shrinkage cracking is very high. But LMC is form a close-packed layer of polymer particles in very early time from the time of adds the latex and water. So plastic shrinkage cracking compare with normal concrete is not occur at final setting time. Results indicates that LMC is advantage to prevent occurrence of plastic shrinkage crack and it's possible co construction for bridge deck overlay effectively.

  • PDF