• Title/Summary/Keyword: Lateral slope

Search Result 210, Processing Time 0.023 seconds

Stability of Bridge Abutments on Soft Ground Undergoing Lateral Flow (측방유동 연약지반상 교대의 안정성)

  • 홍원표;송영석;신도순;손규만
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.199-208
    • /
    • 2001
  • 본 연구의 목적은 교대가 설치된 지반의 사면안전율과 교대측방변위의 관계를 분석하여 교대의 측방이동 판정기준을 마련하고자 함에 있다. 이를 위하여 국내의 연약지반에 설치된 30개 교대의 측방이동사례를 조사하고, SLOPILE (Ver 2.0)프로그램을 이용하여 교대의 측방변위와 교대기초말뚝의 사면안정효과를 고려한 사면안정해석을 실시한다. 해석결과 교대기초말뚝의 실측측방변위를 고려할 경우 1.8이상 되어야 한다. 또한, 교대기초말뚝의 허용측방변위량에 따른 사면안정 해석결과, 교대의 허용측방변위가 작게 규정될수록 사면안정성에 기여하는 말뚝의 효과는 감소하고 있음을 알 수 있다.

  • PDF

Three-dimensional Finite Element Studies of the Behavior of Short Pile Subjected to Lateral Load near a Sandy Slope (모래사면에 설치된 수평하중을 받는 짧은 말뚝의 거동에 관한 3차원 탄소성 유한요소해석)

  • ;Ugai Keizo;Wakai Akihiko
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.3
    • /
    • pp.41-50
    • /
    • 2001
  • 본 연구는 모래사면의 언덕근처에 설치된 짧은 말뚝의 수평하중의 영향에 관한 것이다. 3차원 탄소성 유한요소법해석과 실내 모형실험의 결과를 비교하였다. 경사 30$^{\circ}$의 사면에 시공된 짧은 말뚝의 특성을 파악하기 위해, 사면언덕에서 모형말뚝까지의 거리를 3종류로 상이하게 하여, 모형실험을 실시하였다. 사용된 모래의 지반특성은 배수조건하의 삼축압축실험으로 결정하였다. 동시에 3차원 탄소성 유한요소법에 의한 수치해석결과와 모형실험결과를 비교하였다. 본 유한요소법의 해석에 있어서 모래지반을 탄성완전소성모델(Elastic-perfectly plastic model)로 가정하여, 파괴기준으로 Mohr-Coulomb 식과 소성 포텐셜에 대해서는 Drucker-Prager 식을 적용한 MC-DP 모델로 하였다. 이러한 MC-DP 모델의 구성식은 유한요소법에서 있어 계산치의 수렴에 유익하다. 3차원 탄소성 유한요소법에 의한 수치해석이 사질토 사면의 언덕 부근에 설치된 단하의 수평거동에 대한 파악에 유효하다는 것을 확인하였다.

  • PDF

The Differences of the Normalized Jerk According to Shoes, Velocity and Slope During Walking (보행시 신발, 속도, 그리고 경사도에 따른 정규 저크의 차이)

  • Han, Young-Min;Choi, Jin-Seung;Kim, Hyung-Sik;Lim, Young-Tae;Yi, Jeong-Han;Tack, Gye-Rae;Yi, Kyung-Ok;Park, Seung-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.1-8
    • /
    • 2006
  • The purpose of this study was to evaluate normalized jerk according to shoes, slope, and velocity during walking. Eleven different test subjects used three different types of shoes (running shoes, mountain climbing boots, and elevated forefoot walking shoes) at various walking speeds(1.19, 1.25, 1.33, 1.56, 1.78, 1.9, 2, 2.11, 2.33m/sec) and gradients(0, 3, 6, 10 degrees) on a treadmill. Since there were concerns about using the elevated forefoot shoes on an incline, these shoes were not used on a gradient. Motion Analysis (Motion Analysis Corp. Santa Rosa, CA USA) was conducted with four Falcon high speed digital motion capture cameras. Utilizing the maximum smoothness theory, it was hypothesized that there would be differences in jerk according to shoe type, velocity, and slope. Furthermore, it was assumed that running shoes would have the lowest values for normalized jerk because subjects were most accustomed to wearing these shoes. The results demonstrated that elevated forefoot walking shoes had lowest value for normalized jerk at heel. In contrast, elevated forefoot walking shoes had greater normalized jerk at the center of mass at most walking speeds. For most gradients and walking speeds, hiking boots had smaller medio-lateral directional normalized jerk at ankle than running shoes. These results alluded to an inverse ratio for jerk at the heel and at the COM for all types of shoes. Furthermore, as velocity increased, medio-lateral jerk was reduced for all gradients in both hiking boots and running shoes. Due to the fragility of the ankle joint, elevated forefoot walking shoes could be recommended for walking on flat surfaces because they minimize instability at the heel. Although the elevated forefoot walking shoes have the highest levels of jerk at the COM, the structure of the pelvis and spine allows for greater compensatory movement than the ankle. This movement at the COM might even have a beneficial effect of activating the muscles in the back and abdomen more than other shoes. On inclines hiking boots would be recommended over running shoes because hiking boots demonstrated more medio-lateral stability on a gradient than running shoes. These results also demonstrate the usefulness of normalized jerk theory in analyzing the relationship between the body and shoes, walking velocity, and movement up a slope.

Design and Safety Performance Evaluation of the Riding Three-Wheeled Two-Row Soybean Reaper

  • Jun, Hyeon-Jong;Choi, Il-Su;Kang, Tae-Gyoung;Kim, Young-Keun;Lee, Sang-Hee;Kim, Sung-Woo;Choi, Yong;Choi, Duck-Kyu;Lee, Choung-Keun
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.288-293
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate the key factors in designing a three-wheeled two-row soybean reaper (riding type) that is suitable for soybean production, and ensure worker safety by proposing optimal work conditions for the prototype of the designed machine in relation to the slope of the road. Methods: A three-wheeled two-row soybean reaper (riding type) was designed and its prototype was fabricated based on the local soybean-production approach. This approach was considered to be closely related to the prototype-designing of the cutter and the wheel driving system of the reaper. Load distribution on the wheels of the prototype, its minimum turning radius, static lateral overturning angle, tilt angle during driving, and The working and rear overturning (back flip) angle were measured. Based on the gathered information, investigations were conducted regarding optimal work conditions for the prototype. The investigations took into account driving stability and worker safety. Results: The minimum ground clearance of the prototype was 0.5 m. The blade height of the prototype was adjusted such that the cutter was operated in line with the height of the ridges. The load distribution on the prototype's wheels was found to be 1 (front wheel: F): 1.35 (rear-left wheel: RL): 1.43 (rear-right wheel: RR). With the ratio of load distribution between the RL and RR wheels being 1: 1.05, the left-to-right lateral loads were found to be well-balanced. The minimum turning radius of the prototype was 2.0 m. Such a small turning radius was considered to be beneficial for cutting work on small-scale fields. The sliding of the prototype started at $25^{\circ}$, and its lateral overturning started at $39.3^{\circ}$. Further, the critical slope angle for the worker to drive the prototype in the direction of the contour line on an incline was found to be $12.8^{\circ}$, and the safe angle of slope for the cutting was measured to be less than $6^{\circ}$. The critical angle of slope that allowed for work was found to be $10^{\circ}$, at which point the prototype would overturn backward when given impact forces of 1,060 N on its front wheel. Conclusions: It was determined that farmers using the prototype would be able to work safely in most soybean production areas, provided that they complied with safe working conditions during driving and cutting.

Changes in Acceleration at the Upper Thigh and Ankle with Variations in Gait Speed and Walkway Slope (보행 속도와 보행로 경사에 따른 대퇴상부와 발목상부에서의 가속도의 변화)

  • Kwon, Yu-Ri;Kim, Ji-Won;Kang, Dong-Won;Tack, Gye-Rae;Eom, Gwang-Moon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.191-196
    • /
    • 2010
  • The purpose of this study was to investigate the effect of gait speed and walkway slope on the body acceleration, for the future validation of using an accelerometer in the estimation of energy consumption. Ten young healthy subjects with accelerometers on the upper thigh and ankle walked on a treadmill at 9 conditions(three speeds ${\times}$ three slopes) for 5 minutes. Acceleration signals of four directions, i.e. anterior-posterior(AP), medio-lateral(ML), superior-inferior(SI) and vector sum(VS) directions, of each sensor were measured, and root means squared(RMS) values of them were used as analysis variables. As statistical analysis, repeated measure two-way ANOVA was performed for RMS accelerations at each attachment sites, with slope and velocity as independent factors. At both the upper thigh and ankle, RMS acceleration of all directions were affected by gait velocities(p<.001) showing greater accelerations for higher velocities. Contrary to expectations, no slope effect existed in RMS accelerations at hip. Moreover, RMS acceleraion at ankle decreased with slope in SI and VS directions(p<.01). These results suggests that RMS acceleration cannot reflect the change in physical activity due to the change in walkway slope.

A STUDY ON THE ANGLE OF ARTICULAR EMINENCE AND THE INCLINATION OF ANTERIOR TOOTH RELATED TO FACIAL TYPES (안모유형에 따른 악관절융기와 전치의 경사도에 관한 연구)

  • Park, Jae-Gu;Kim, Jong-Chul
    • The korean journal of orthodontics
    • /
    • v.22 no.4 s.39
    • /
    • pp.869-880
    • /
    • 1992
  • The purpose of this study was to evaluate the difference and relationship between the slope of articular eminence and the inclination of upper and lower incisor teeth, which are related to the functional stability of occlusion in mandibular protrusion, according to Ricketts' facial types, by the use of lateral cephalogram and SAM2 articulator in 68-adult normal occlusion without tooth missing, orthodontic treatment and occlusal equilibration. The results of this study were as follows : 1 . The angle of articular eminence slope to occlusal plane in brachyfacial type was steeper than that in dolichofacial type, but the angle of articular eminence slope to SN plane and FH plane was not different between facial types. 2. The upper incisor axis in dolichofacial type was steeper than that in brachyfacial type, but lingual surface slope of upper incisor was not different between facial types. 3. In all samples there was a positive correlation between the angle of articular eminence slope and the lingual surface slope of upper incisor to SN plane and FH plane, and in mesofacial type there was a positive correlation between the angle of articular eminence slope and the lingual surface slope of upper incisor to SN plane, FH plane and occlusal plane, and in brachyfacial type there was a positive correlation between the angle of articular eminence slope and the lingual surface slope of upper incisor to occlusal plane. 4. In all samples there was a positive correlation between the angle of articular eminence slope and the angle of Dc-Gn to SN plane, and in mesofacial type there was a positive correlation between the angle of articular eminence slope and the angle of Dc-Gn to occlusal plane, and in brachyfacial type there was a positive correlation between the angle of articular eminence slope and the angle of Dc-Gn to SN plane and FH plane. 5. In all samples there was a positive correlation between the angle of Dc-Gn and the lingual surface slope of upper incisor to SN plane and FH plane, and in mesofacial type there was a positive correlation between the angle of Dc-Gn and the lingual surface slope of upper incisor to SN plane. 6. In all samples and facial types there was a negative correlation between MP to 1 axis and condylar incisal angle.

  • PDF

The Impact Loads on the Hitch Point of the Tiller-Trailer System (동력경운기의 경사지 견인 및 주행 특성에 관한 연구(제일보)-동력경운기 -트레일계의 힛치점에 작용하는 충격력-)

  • 송현갑;장창주
    • Journal of Biosystems Engineering
    • /
    • v.2 no.1
    • /
    • pp.33-48
    • /
    • 1977
  • Transporting agricultural products and the other material by the two-wheel-tractor (power-tiler)and trailer system may be one of its most widely used farming functions.The safety and hitching load for all the previaling performing conditions may be the general concern over the operation of the tiller-trailer system. In this study, a mathematical model to determine the static and dynamic forces excerting on the hitch point were developed . Based on the analysis of the model and the field measurements. the limiting hitching load and critical slope were analyzed. The results of the study are summarized as follows ; 1) The limit angle of slope land for the safety steering that two-wheel tractor-single axle trailer system was able to transport agricultural products was the direct angle (${\gamma}$) = 8 ; the cross angle$\beta$) 15 ; and it was decreased in accordance with the increase of carrying load ($W_4). 2) The critical velocity for safe operation in case of running on downward hill road was about 1.08m/sec. 3) The limiting carrying load for the safe steering was W$_4$=600kg. The degree of the safe steering for different braking methods was given in order as follows ; Simulataneous braking the tractor and trailer , braking the trailer only, and braking tractor only. 4) Among the three components of impact loads excerting on the hitch point, the component in the lateral direction ($P_{Vy}$) was near zero in spite of increase of hitching load ($W_4) , while the components in the other two mutually perpedicular directions ($P_{Vx}$ and ($P_{Vz}$) ) had larger values in horizontal plane than those in the slope lands. 5) Moment of forces on the lateral direction (M$y$) had the largest value among the three components of impact moment acting on the hitch point, however all the components were sharply increased in accordance with the increase of hitching loads ($W_4. Three components of the moment were the negative values.

  • PDF

A COMPUTER ANALYSIS ON THE CONDYLAR PATH OF BALANCING SIDE IN MANDIBULAR LATERAL MOVEMENT (하악 측방운동시 평형측 과두의 운동 궤적에 관한 컴퓨터 분석)

  • Lee Dong-Hyun;Choi Dae-Gyun;Park Nam-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.4
    • /
    • pp.549-564
    • /
    • 1993
  • The purpose of this study was to research the condylar path and the anterior angle of glenoid fossae and classify the patterns of condylar path. Thirty male and female dental students with normal occlesion and masticatory system ranging in age from 21 to 30, without present symptoms and an)r history of TM joint disturbance, were selected for this study. Transcranial radiographs of TM joints under mandibular lateral movement were obtained. By the computer analysis on the radiographs, the angle of posterior slope of articular eminance, the sagittal condylar guidance angie, condylar movement patterns and the height of glenoid fossa was measured respectively, and studied their interrelationship comparatively. The results obtained were as follows : 1. The total distance of condylar movement on balancing side during mandibular lateral movement was 4.55mm for Lt. and 4.78mm for Rt. when mandible moved from C.R. to canine to canine relation and 7.86mm for the Lt. and 8.10mm for the Rt. when mandible moved from C.R. to 7.5mm. 2. The horizontal distance of condylar movement on balancing side during mandibular lateral movements was 3.16mm for the Lt. and 3.52mm for the Rt. when mandible moved from C.R. to canine to canine relation and 6.10mm for the Lt. and 6.30mm for the Rt. when mandible moved from C.R. to 7.5mm. 3. The sagittal condylar guidance angle on balancing side during mandibular lateral movements was $45.96^{\circ}$ for the Lt. and $43.22^{\circ}$ for the Rt. when mandible moved from C.R. from canine to canine relation and $41.14^{\circ}$ for the Lt. and $39.77^{\circ}$ for the Rt. when mandible moved from C.R. to 7.5mm. 4. The height of glenoid fossa was 8.23mm for the Lt. and 7.80mm for the Rt. and the angle of posterior slope of articular eminence was $38.30^{\circ}$ for the Lt. and $38.79^{\circ}$ for the Rt. by method-A and $55.61^{\circ}$ for the Lt. and $55.64^{\circ}$ for the Rt. by method-B. 5. The sequence of the frequency of condylar movement patterns on balancing side during mandibular lateral movement were concave type(30 cases), convex type(16 cases), reverse S shape curve(9 cases) and S shape curve(5 cases) when mandible moved from C.R. to canine to canine relation and concave type(27 cases), 5 shape curve(13 cases), convex type(11 cases) and reverse S shape curve(9 cases) when mandible moved from C.R. to 7.5mm.

  • PDF

Acromion Morphology in Coronal and Sagittal Plane; Correlation with Rotator Cuff Syndrome (관상면과 시상면에서의 견봉 형태와 회전근개 파열의 연관성)

  • Jo, Chris H.;Kim, Jung-Taek;Yoon, Kang-Sup;Lee, Ji-Ho;Kang, Seung-Baek;Lee, Jae-Hyup;Han, Hyuk-Soo;Rhee, Seung-Whan
    • Clinics in Shoulder and Elbow
    • /
    • v.12 no.2
    • /
    • pp.126-136
    • /
    • 2009
  • Purpose: We evaluated the correlation of the anatomic parameters of the acromion those represent on the magnetic resonance image (MRI) of impingement syndrome. Materials and Methods: From June, 2004 to December, 2005, 71 cases were surgically proven to be impingement syndrome, and the anterior acromial hooking angle, the lateral acromial hooking angle (AAHA and LAHA) and the acromial hooking index (AHI: the sum of the AAHA and LAHA) were compared to 16 control cases. At the same period, 55 cases were surgically proven to be partial or full thickness rotator cuff tear, and age, gender and twelve anatomic parameters, including the acromial type, the acromial angle, the anterior covering, the acromial slope, the AAHA, the lateral acromial angle, the acromial torsional angle, the lateral acromial angulation, the LAHA, the lateral covering, the acromiohumeral distance and the AHI were assessed. Results: The AAHA and AHI were increased as impingement syndrome proceeded. The acromial type and acromial angle, and the AAHA, LAHA and AHI showed significant differences between the controls and the rotator cuff tear patients on univariant analysis. On multivariant analysis, gender was most strongly correlated with rotator cuff tear. Age, AAHA and the acromial angle showed similar correlation, respectively. Conclusion: The coronal acromial shape is correlated with rotator cuff tear, and it is important to correct the lateral acromial shape when performing acromioplasty.

Characteristics of Wind Direction Shear and Momentum Fluxes within Roughness Sublayer over Sloping Terrain (경사가 있는 지형의 거칠기 아층에서 풍향시어와 운동량 플럭스의 특성)

  • Lee, Young-Hee
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.591-600
    • /
    • 2015
  • We have analyzed wind and eddy covariance data collected within roughness sublayer over sloping terrain. The study site is located on non-flat terrain with slopes in both south-north and east-west directions. The surface elevation change is smaller than the height of roughness element such as building and tree. This study examines the directional wind shear for data collected at three levels in the lowest 10 m in the roughness sublayer. The wind direction shear is caused by drag of roughness element and terrain-induced motions at this site. Small directional shear occurs when wind speed at 10 m is strong and wind direction at 10 m is southerly which is the same direction as upslope flow near surface at this site during daytime. Correlation between vertical shear of lateral momentum and lateral momentum flux is smaller over steeply sloped surface compared to mildly sloped surface and lateral momentum flux is not down-gradient over steeply sloped surface. Quadrant analysis shows that the relative contribution of four quadrants to momentum flux depends on both surface slope and wind direction shear.