• Title/Summary/Keyword: Lateral slope

Search Result 210, Processing Time 0.033 seconds

Prototype Development of a Small Combine for Harvesting Miscellaneous Cereal Crops and its Basic Performance

  • Lee, Beom Seob;Yoo, Soonam;Lee, Changhoon;Yun, Young Tae
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.311-319
    • /
    • 2018
  • Purpose: The aim of this study is to develop a small combine for harvesting miscellaneous cereal crops. Methods: A prototype small combine was designed and constructed. Its specifications and basic performance were investigated. Results: The prototype small combine for harvesting miscellaneous cereal crops was designed and constructed to reflect similar specifications as those of the conventional combine. The prototype small combine comprises a diesel engine with the rated power/speed of 22.0 kW/2,600 rpm, three-stage primary and two-stage speed range transmission shifts, and a double acting threshing part. The maximum travel speeds of the prototype combine are approximately 0.72 m/s, 2.50 m/s, 0.30 m/s at the low, high speed range shifts in the forward direction, and while traversing in the reverse direction, respectively. The minimum radius of turning was approximately 1.50 m. In a static lateral overturning test, the prototype combine overturned neither to the right nor to left on a $30^{\circ}$ slope. The results of an oilseed rape harvesting test included the maximum operating speed of 0.32 m/s, the grain loss ratio of approximately 9.0%, and the effective field capacity of approximately 10.3 a/h. Additionally, among the outputs in grain outlet, the whole grains, damage grains, and materials other than grain (MOG) ratios accounted for 97.4%, 0.0%, and 2.6%, respectively. Conclusions: The prototype small combine for harvesting miscellaneous cereal crops indicates good driving ability and stability. The results of the oilseed rape harvesting test reveal that the harvesting performance must be enhanced such that the separating and cleaning parts are more suitable for each type of crop, thus reducing grain loss and foreign substances among the outputs in grain outlet. An improved small prototype combine could be used effectively to mechanize the harvesting of miscellaneous cereal crops in small family farms or semi-mountainous areas.

Model tests for the inhibition effects of cohesive non-swelling soil layer on expansive soil

  • Lu, Zheng;Tang, Chuxuan;Yao, Hailin;She, Jianbo;Cheng, Ming;Qiu, Yu;Zhao, Yang
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.91-97
    • /
    • 2022
  • The cohesive non-swelling soil (CNS) cushion technology has been widely applied in the subgrade and slope improvement at expansive soil regions. However, the mechanism of the inhibition effect of the CNS layer on expansive soil (ES) has not been fully understood. We performed four outdoor model tests to further understand the inhibition effect, including different kinds of upper layer and thickness, under the unidirectional seepage condition. The swelling deformation, soil pressure, and electrical resistivity were constantly monitored during the saturation process. It is found that when a CNS layer covered the ES layer, the swelling deformation and electrical resistivity of the ES layer decreased significantly, especially the upper part. The inhibition effect of the CNS layer increases with the increase of CNS thickness. The distribution of vertical and lateral soil pressure also changed with the covering of a CNS layer. The electrical resistivity can be an effective index to describe the swelling deformation of ES layer and analyze the inhibition effect of the CNS layer. Overall, the CNS deadweight and the ion migration are the major factors that inhibit the swelling deformation of expansive soil.

Relationship between Spinopelvic Parameters and Hip Function in Patients with Femoroacetabular Impingement at Diagnosis: A Cross-Sectional Study

  • Bernardo Aguilera-Bohorquez;Pablo Corea;Cristina Siguenza;Jochen Gerstner-Saucedo;Alvaro Carvajal;Erika Cantor
    • Hip & pelvis
    • /
    • v.35 no.1
    • /
    • pp.6-14
    • /
    • 2023
  • Purpose: The aim of this study was to determine correlation between the spinopelvic parameters in sitting and standing positions (sacral slope [SS], lumbar lordosis [LL], spinopelvic tilt [SPT], pelvic incidence [PI], and pelvic femoral angle [PFA]), with hip function assessed using the modified Harris hip scores (mHHs) in patients with symptomatic femoroacetabular impingement (FAI) at diagnosis. Materials and Methods: A retrospective study of 52 patients diagnosed with symptomatic FAI was conducted. Evaluation of the spinopelvic complex in terms of SS, LL, SPT, PI and PFA was performed using lateral radiographs of the pelvis and lumbosacral spine in standing and sitting positions. Assessment of hip function at diagnosis was performed using the mHHs. Calculation of spinopelvic mobility was based on the difference (Δ) between measurements performed in standing and sitting position. Results: The median time of pain evolution was 11 months (interquartile range [IQR], 5-24 months) with a median mHHs of 66.0 points (IQR, 46.0-73.0) at diagnosis. The mean change of LL, SS, SPT, and PFA was 20.9±11.2°, 14.2±8.6°, 15.5±9.0°, and 70.7±9.5°, respectively. No statistically significant correlation was observed between spinopelvic parameters and the mHHs (P>0.05). Conclusion: Radiological parameters of the spinopelvic complex did not show correlation with hip function at the time of diagnosis in patients with symptomatic FAI. Conduct of further studies will be required in the effort to understand the effect of the spinopelvic complex and its compensatory mechanics, primarily between the hip and spine, in patients with FAI before and after hip arthroscopy.

Behaviors of Soft Bangkok Clay behind Diaphragm Wall Under Unloading Compression Triaxial Test (삼축압축 하에서 지중연속벽 주변 방콕 연약 점토의 거동)

  • Le, Nghia Trong;Teparaksa, Wanchai;Mitachi, Toshiyuki;Kawaguchi, Takayuki
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.9
    • /
    • pp.5-16
    • /
    • 2007
  • The simple linear elastic-perfectly plastic model with soil parameters $s_u,\;E_u$ and n of undrained condition is usually applied to predict the displacement of a constructed diaphragm wall(DW) on soft soils during excavation. However, the application of this soil model for finite element analysis could not interpret the continued increment of the lateral displacement of the DW for the large and deep excavation area both during the elapsed time without activity of excavation and after finishing excavation. To study the characteristic behaviors of soil behind the DW during the periods without excavation, a series of tests on soft Bangkok clay samples are simulated in the same manner as stress condition of soil elements happening behind diaphragm wall by triaxial tests. Three kinds of triaxial tests are carried out in this research: $K_0$ consolidated undrained compression($CK_0U_C$) and $K_0$ consolidated drained/undrained unloading compression with periodic decrement of horizontal pressure($CK_0DUC$ and $CK_0UUC$). The study shows that the shear strength of series $CK_0DUC$ tests is equal to the residual strength of $CK_0UC$ tests. The Young's modulus determined at each decrement step of the horizontal pressure of soil specimen on $CK_0DUC$ tests decreases with increase in the deviator stress. In addition, the slope of Critical State Line of both $CK_0UC$ and $CK_0DUC$ tests is equal. Moreover, the axial and radial strain rates of each decrement of horizontal pressure step of $CK_0DUC$ tests are established with the function of time, a slope of critical state line and a ratio of deviator and mean effective stress. This study shows that the results of the unloading compression triaxial tests can be used to predict the diaphragm wall deflection during excavation.

Improved Degradation Characteristics in n-TFT of Novel Structure using Hydrogenated Poly-Silicon under Low Temperature (낮은 온도 하에서 수소처리 시킨 다결정 실리콘을 사용한 새로운 구조의 n-TFT에서 개선된 열화특성)

  • Song, Jae-Ryul;Lee, Jong-Hyung;Han, Dae-Hyun;Lee, Yong-Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.105-110
    • /
    • 2008
  • We have proposed a new structure of poly-silicon thin film transistor(TFT) which was fabricated the LDD region using doping oxide with graded spacer by etching shape retio. The devices of n-channel poly-si TFT's hydrogenated by $H_2$ and $HT_2$/plasma processes are fabricated for the devices reliability. We have biased the devices under the gate voltage stress conditions of maximum leakage current. The parametric characteristics caused by gate voltage stress conditions in hydrogenated devices are investigated by measuring /analyzing the drain current, leakage current, threshold voltage($V_{th}$), sub-threshold slope(S) and transconductance($G_m$) values. As a analyzed results of characteristics parameters, the degradation characteristics in hydrogenated n-channel polysilicon TFT's are mainly caused by the enhancement of dangling bonds at the poly-Si/$SiO_2$ interface and the poly-Si Brain boundary due to dissolution of Si-H bonds. The structure of novel proposed poly-Si TFT's are the simplity of the fabrication process steps and the decrease of leakage current by reduced lateral electric field near the drain region.

  • PDF

Resonant Characteristics in Rectangular Harbor with Narrow Entrance (2.Effects of Entrance Energy Loss) (개구부가 좁은 직사각형 항만의 공진 특성 (2.항입구 에너지 손실의 영향))

  • 정원무;박우선;서경덕;채장원
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.4
    • /
    • pp.216-230
    • /
    • 1999
  • A Galerkin finite element model for the analysis of harbor oscillation has been developed based on the extended mild-slope equation. Infinite elements are used to accomodate the radiation condition at infinity and joint elements to treat the matching conditions at the harbor entrance which include the energy loss due to flow separation. The numerical tests for rectangular harbors with fully or partially open entrances show that the energy loss at the harbor entrance considerably reduces the the amplification ratios at the innermost parts of the harbors and that the amplification ratios decrease considerably with increasing incident wave heights and jet lengths at the harbor entrance. Application of the model to the Gamcheon harbor show that when the incident wave amplitude is small the amplification ratios rather increase when the entrance energy loss is included than when ignored because of the shift of the resonance periods. Even though the entrance energy loss was insignificant for the measured long-period incident waves, it would be of great importance if the incident waves were large as in the attack of tsunamis. The resonance period of the Helmholtz mode at the Gamcheon Harbor was calculated to be 31 minutes, which agrees well with the measured one between 27 and 33.3 minutes. The measured resonance periods between 9.4 and 12.1 minutes and 5.2 and 6.2 minutes were also calculated by the numerical model as 10.4 minutes and 6.6 or 5.6 minutes, indicating good performance of the model. On the other hand, it was shown that a variety of oscillation modes exists in the Gamcheon Harbor and lateral resonances of considerable amplification ratios also exist at the periods of 3.6 and 1.6 minutes as in the Young-II Bay.

  • PDF

Sedimentary Facies and Architecture of a Gigantic Gravelly Submarine Channel System in a Cretaceous Foredeep Trough (the Magallanes Basin, Southern Chile)

  • Sohn, Young Kwan;Jo, Hyung Rae;Woo, Jusun;Kim, Young-Hwan G.;Choe, Moon Young
    • Ocean and Polar Research
    • /
    • v.39 no.2
    • /
    • pp.85-106
    • /
    • 2017
  • The Lago Sofia conglomerate in southern Chile is a deep-marine gravelly deposit, which is hundreds of meters thick and kilometers wide and extends laterally for more than 100 km, filling the foredeep trough of the Cretaceous Magallanes Basin. For understanding the depositional processes and environments of this gigantic deep-sea conglomerate, detailed analyses on sedimentary facies, architecture and paleoflow patterns were carried out, highlighting the differences between the northern (Lago Pehoe and Lago Goic areas) and southern (Lago Sofia area) parts of the study area. The conglomerate bodies in the northern part occur as relatively thin (< 100 m thick), multiple units intervened by thick mudstone-dominated sequences. They show paleoflows toward ENE and S to SW, displaying a converging drainage pattern. In the southern part, the conglomerate bodies are vertically interconnected and form a thick (> 400 m thick) conglomerate sequence with rare intervening fine-grained deposits. Paleoflows are toward SW. The north-to-south variations are also distinct in sedimentary facies. The conglomerate bodies in the southern part are mainly composed of clast-supported conglomerate with sandy matrix, which is interpreted to be deposited from highly concentrated bedload layers under turbidity currents. Those in the northern part are dominated by matrix- to clast-supported conglomerate with muddy matrix, which is interpreted as the products of composite mass flows comprising a turbidity current, a gravelly hyperconcentrated flow and a mud-rich debris flow. All these characteristics suggest that the Lago Sofia conglomerate was formed in centripetally converging submarine channels, not in centrifugally diverging channels of submarine fans. The tributaries in the north were dominated by mass flows, probably affected by channel-bank failures or basin-marginal slope instability processes. In contrast, the trunk channel in the south was mostly filled by tractive processes, which resulted in the vertical and lateral accretion of gravel bars, deposition of gravel dunes and filling of scours and channels, similar to deposits of terrestrial gravel-bed rivers. The trunk channel developed along the axis of foredeep trough and its confinement within the trough is probably responsible for the thick, interconnected channel fills. The large-scale architecture of the trunk-channel fills shows an eastward offset stacking pattern, suggesting that the channel migrated eastwards most likely due to the uplift of the Andean Cordillera.

Dual-Band High-Efficiency Class-F Power Amplifier using Composite Right/Left-Handed Transmission Line (Composite Right/Left-Handed 전송 선로를 이용한 이중 대역 고효율 class-F 전력증폭기)

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.8
    • /
    • pp.53-59
    • /
    • 2008
  • In this paper, a novel dual-band high-efficiency class-F power amplifier using the composite right/left-handed (CRLH) transmission lines (TLs) has been realized with one RF Si lateral diffusion metal-oxide-semiconductor field effect transistor (LDMOSFET). The CRLH TL can lead to metamaterial transmission line with the dual-band tuning capability. The dual-band operation of the CRLH TL is achieved by the frequency offset and the nonlinear phase slope of the CRLH TL for the matching network of the power amplifier. Because the control of the all harmonic components is very difficult in dual-band, we have managed only the second- and third-harmonics to obtain the high efficiency with the CRLH TL in dual-band. Also, the proposed power amplifier has been realized by using the harmonic control circuit for not only the output matching network, but also the input matching network for better efficiency. Two operating frequencies are chosen at 880 MHz and 1920 MHz in this work. The measured results show that the output power of 39.83 dBm and 35.17 dBm was obtained at 880 MHz and 1920 MHz, respectively. At this point, we have obtained the power-added efficiency (PAE) of 79.536 % and 44.04 % at two operation frequencies, respectively.

The role of geophysics in understanding salinisation in Southwestern Queensland (호주 Queensland 남서부 지역의 염분작용 조사)

  • Wilkinson Kate;Chamberlain Tessa;Grundy Mike
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.78-85
    • /
    • 2005
  • This study, combining geophysical and environmental approaches, was undertaken to investigate the causes of secondary salinity in the Goondoola basin, in southwestern Queensland. Airborne radiometric, electromagnetic and ground electromagnetic datasets were acquired, along with data on soils and subsurface materials and groundwater. Relationships established between radiometric, elevation data, and measured material properties allowed us to generate predictive maps of surface materials and recharge potential. Greatest recharge to the groundwater is predicted to occur on the weathered bedrock rises surrounding the basin. Electromagnetic data (airborne, ground, and downhote), used in conjunction with soil and drillhole measurements, were used to quantify regolith salt store and to define the subsurface architecture. Conductivity measurements reflect soil salt distribution. However, deeper in the regolith, where the salt content is relatively constant, the AEM signal is influenced by changes in porosity or material type. This allowed the lateral distribution of bedrock weathering zones to be mapped. Salinisation in this area occurs because of local-andintermediate-scale processes, controlled strongly by regolith architecture. The present surface outbreak is the result of evaporative concentration above shallow saline groundwater, discharging at break of slope. The integration of surficial and subsurface datasets allowed the identification of similar landscape settings that are most at risk of developing salinity with groundwater rise. This information is now being used by local land managers to refine management choices that prevent excess recharge and further salt mobilisation.

Evaluation of the Degenerative Changes of the Distal Intervertebral Discs after Internal Fixation Surgery in Adolescent Idiopathic Scoliosis

  • Dehnokhalaji, Morteza;Golbakhsh, Mohammad Reza;Siavashi, Babak;Talebian, Parham;Javidmehr, Sina;Bozorgmanesh, Mohammadreza
    • Asian Spine Journal
    • /
    • v.12 no.6
    • /
    • pp.1060-1068
    • /
    • 2018
  • Study Design: Retrospective study. Purpose: Lumbar intervertebral disc degeneration is an important cause of low back pain. Overview of Literature: Spinal fusion is often reported to have a good course for adolescent idiopathic scoliosis (AIS). However, many studies have reported that adjacent segment degeneration is accelerated after lumbar spinal fusion. Radiography is a simple method used to evaluate the orientation of the vertebral column. magnetic resonance imaging (MRI) is the method most often used to specifically evaluate intervertebral disc degeneration. The Pfirrmann classification is a well-known method used to evaluate degenerative lumbar disease. After spinal fusion, an increase in stress, excess mobility, increased intra-disc pressure, and posterior displacement of the axis of motion have been observed in the adjacent segments. Methods: we retrospectively secured and analyzed the data of 15 patients (four boys and 11 girls) with AIS who underwent a spinal fusion surgery. We studied the full-length view of the spine (anterior-posterior and lateral) from the X-ray and MRI obtained from all patients before surgery. Postoperatively, another full-length spine X-ray and lumbosacral MRI were obtained from all participants. Then, pelvic tilt, sacral slope, curve correction, and fused and free segments before and after surgery were calculated based on X-ray studies. MRI images were used to estimate the degree to which intervertebral discs were degenerated using Pfirrmann grading system. Pfirrmann grade before and after surgery were compared with Wilcoxon signed rank test. While analyzing the contribution of potential risk factors for the post-spinal fusion Pfirrmann grade of disc degeneration, we used generalized linear models with robust standard error estimates to account for intraclass correlation that may have been present between discs of the same patient. Results: The mean age of the participant was 14 years, and the mean curvature before and after surgery were 67.8 and 23.8, respectively (p<0.05). During the median follow-up of 5 years, the mean degree of the disc degeneration significantly increased in all patients after surgery (p<0.05) with a Pfirrmann grade of 1 and 2.8 in the L2-L3 before and after surgery, respectively. The corresponding figures at L3-L4, L4-L5, and L5-S1 levels were 1.28 and 2.43, 1.07 and 2.35, and 1 and 2.33, respectively. The lower was the number of free discs below the fusion level, the higher was the Pfirrmann grade of degeneration (p<0.001). Conversely, the higher was the number of the discs fused together, the higher was the Pfirrmann grade. Conclusions: we observed that the disc degeneration aggravated after spinal fusion for scoliosis. While the degree of degeneration as measured by Pfirrmann grade was directly correlated by the number of fused segments, it was negatively correlated with the number of discs that remained free below the lowermost level of the fusion.