• 제목/요약/키워드: Lateral motion compensation

검색결과 11건 처리시간 0.059초

측방향 움직임 보상을 이용한 초음파 의료용 변형률 영상의 화질개선 (Improvement of Medical Ultrasound Strain Image Using Lateral Motion Compensation)

  • 박명기;권성재;정목근
    • 한국음향학회지
    • /
    • 제30권5호
    • /
    • pp.239-248
    • /
    • 2011
  • 초음파 의료용 변형률 영상에서 화질을 향상시키기 위해서는 정확한 변위를 계산하여야 한다. 본 논문에서는 2차원 방향의 움직임에 의한 변위를 구할 때 1차원 변위 계산법을 적용하기 위하여 초음파 신호의 축방향 변위와 측방향 변위를 분리하여 계산하였다. 측방향 변위를 계산하기 위하여, 측방향으로 정렬된 1차원 신호를 해석 신호 (analytic signal)로 변환한 뒤 상호상관방법을 이용하였다. 제안한 측방향 변위계산 알고리즘을 이용하여 구한 측방향 변위로 측방향 움직임을 보상한 뒤에, 다시 축방향 변위를 구하여 변형률 영상을 얻었다. 제안한 방법으로 얻은 변형률 영상은, 기존의 축방향 변위만 계산하여 얻은 변형률 영상에 비해 신호 대 잡음비와 명암대비 대 잡음비에서 향상됨을 팬텀과 인체 데이터를 이용한 실험을 통해 확인하였다.

레이저 간섭계의 진직도 측정오차 보상 (Straightness Measurement Error Compensation of the Laser Interferometer)

  • 김경호;김태호;송창규;이후상;김승우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.114-118
    • /
    • 2001
  • HP Laser Interferometer Measurement System[HP5529A] is one of the most powerful equipment for measurement of the motion accuracy. The straightness measurement system of the HP5529A is composed of wollastone prism and reflector. In this system, straightness error is measured by relative lateral motion between prism and reflector. But rotating motion of prism or reflector as moving optic causes not real straightness error but additive straightness error. Especially unwanted straightness error as this becomes very large when reflector is used as moving optic and an interval between reflector and prism is distant. In this paper, the compensation method is proposed for removing additive error and experiment is carried out for theoretical verification.

  • PDF

유연 부품 조립을 위한 횡방향 오차의 보정 알고리즘 (A Misalignment Compensation Algorithm for Flexible Parts Assembly)

  • 김진영;조형석
    • 제어로봇시스템학회논문지
    • /
    • 제5권7호
    • /
    • pp.841-847
    • /
    • 1999
  • For successful assembly of flexible parts, informations about their deformation as well as possible misalignments between the holes and their mating parts are essential. Such informations can be acquired from visual sensors. For robotic assembly, the corrective assembly motion to compensate for such misalignments has to be determined from the measured informations. However, this may not be simply derived from the measured misalignment alone because the part deformation progressively occurs during misalignment compensation. Based on the analysis of flexible parts assembly process, this paper presents a neural net-based inference system that can infer the complex relationship between the corrective motion and the measured information of parts deformation and misalignments. And it verifies the performance of the implemented inference system. The results show that the proposed neural net-based misalignment compensation algorithm Is effective in compensating for the lateral misalignment, and that it can be extended to the assembly tasks under more general conditions.

  • PDF

자동차 블랙박스 기록 오차 보정과 경로 재구성 해석 (Compensation of Errors on Car Black Box Records and Trajectory Reconstruction Analysis)

  • 양경수;이원희;한인환
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.182-190
    • /
    • 2004
  • This paper presents reconstruction analysis of vehicle trajectory using records of a developed black box, and results of validation tests. For reconstruction of vehicle trajectory, the black box records the longitudinal and lateral accelerations and yaw-rate of vehicle during a pre-defined time period before and after the accident. One 2-axis accelerometer is used for measuring accelerations, and one vibrating structure type gyroscope is used for measuring yaw-rate of vehicle. The vehicle's planar trajectory can be reconstructed by integrating twice accelerations along longitudinal and lateral directions with yaw-rate values. However, there may be many kinds of errors in sensor measurements. The causes of errors are as follows: mis-alignment, low frequency offset drift, high frequency noise, and projecting 3-dimensional motion into 2-dimensional motion. Therefore, some procedures are taken for error compensation. In order to evaluate the reliability and the accuracy of trajectory reconstruction results, the black box was mounted on a passenger car. The vehicle was driven and tested along various specified lanes. Through the tests, the accuracy and usefulness of the reconstruction analysis have been validated.

레이저 간섭계의 진직도 측정오차 보상 (Compensation of the Straightness Measurement Error in the Laser Interferometer)

  • 김경호;김태호;이후상;김승우
    • 한국정밀공학회지
    • /
    • 제22권9호
    • /
    • pp.69-76
    • /
    • 2005
  • The laser interferometer system such as HP5529A is one of the most powerful equipment fur measurement of the straightness error in precision stages. The straightness measurement system, HP5529A is composed of a Wollaston prism and a reflector. In this system, the straightness error is defined as relative lateral motion change between the prism and the reflector and computed from optical path difference of two polarized laser beams between these optics. However, rotating motion of the prism or the reflector used as a moving optic causes unwanted straightness error. In this paper, a compensation method is proposed for removing the unwanted straightness error generated by rotating the moving optic and an experiment is carried out for theoretical verification. The result shows that the unwanted straightness error becomes very large when the reflector is used as the moving optic and the distance between the reflector and the prism is far. Therefore, the prism must be generally used as the moving optic instead of the reflector so as to reduce the measurement error. Nevertheless, the measurement error must be compensated because it's not a negligible error if a rotating angle of the prism is large. In case the reflector must be used as the moving optic, which is unavoidable when the squareness error is measured between two axes, this compensation method can be applied and produces a better result.

산업재해로 발생한 외상성 허리손상에 대한 새로운 재활치료프로그램의 효과 비교 (Comparison of Rehabilitation Programs in Traumatic Low Back Injuries with Industrial Accident)

  • 김영범;김승원
    • 한국산업보건학회지
    • /
    • 제29권2호
    • /
    • pp.236-250
    • /
    • 2019
  • Objectives: The purpose of this study was to investigate the effect of intensive rehabilitation programs on pain, range of motion (ROM), lumbar muscle strength, core muscle endurance, disability, and depression in patients with traumatic low back injuries and to compare the efficacy of this therapy with that of conventional rehabilitation therapy. Methods: The study was performed with a retrospective medical chart review of patients with traumatic low back injury referred to the rehabilitation center at the Daegu Hospital of the Korean Workers Compensation and Welfare Service. Forty-four patients were allocated to either the conventional rehabilitation group (CRG; n = 22) or the intensive rehabilitation group (IRG; n = 22). The CRG group patients, who received 30-min therapist-supervised physical therapy and modality therapy five times per week for four weeks, were compared with the IRG group patients, who received 60-min therapist-supervised physical therapy, 30-min therapist-patient 1:1 matching rehabilitation therapy, and modality therapy five times per week for four weeks. Outcome measures were a numerical rating scale, ROM, lumbar muscle strength, lumbar core muscle endurance, thickness of lumbar deep focal core muscle (transverse abdominis and lumbar multifidus), Oswestry disability index (ODI), and depression (Korean version patient health questionnaire-9). Results: There were statistically significant improvements after treatment in all outcome measures in both groups (p < 0.05). In the intergroup comparison, NRS scores on the activity and thickness of lumbar deep focal core muscles increased significantly more in the IRG than in the CRG (p < 0.05). There were no statistically significant intergroup differences in NRS scores on resting, ROM except left lateral bending, lumbar muscle strength, core muscle endurance, ODI, and depression. Conclusions: We could confirm the superior effectiveness of an intensive rehabilitation program compared to conventional rehabilitation therapy in patients with traumatic low back injuries.

무인자전거의 자율주행제어 (Autonomous Tracking Control of Unmanned Electric Bicycle)

  • 김성훈;임삼수;함운철
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.446-449
    • /
    • 2004
  • In the former researches〔2〕〔5〕 for the unmanned bicycle system, we do only focus on stabilizing it by using the lateral motion of mass which plays important role in driving a bicycle system. In this papers, we suggest an algorithm for deriving steering angle and speed for a given desired tracking path. As you may see in this paper, load mass balance system plays important role in stabilization and it is also discussed. We propose a control algorithm for the autonomous self stabilization of unmanned bicycle by using nonlinear compensation-like control based on the Lyapunov stability theory We then propose a tracking control strategy by moving the center of load mass left and right respectively. From the computer simulation results, we can show the effectiveness of the proposed control strategy.

  • PDF

Intelligent Attitude Control of an Unmanned Helicopter

  • An, Seong-Jun;Park, Bum-Jin;Suk, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.265-270
    • /
    • 2005
  • This paper presents a new attitude stabilization and control of an unmanned helicopter based on neural network compensation. A systematic derivation on the dynamics of an unmanned small-scale helicopter is performed. Combined rotor-fuselage-tail dynamics is derived in body-fixed reference frame with its origin at the C.G. of the helicopter. And the resulting nonlinear equation of motion consists of 6-DOF air vehicle dynamics as well as the rotor flapping and engine torque equations. A simulation model was modified using the existing simulator for an unmanned helicopter dynamic model, which reflects the unmanned test helicopter(CNUHELI). The dynamic response of the refined model was compared with the flight test data. It can be shown that a good coincidence was accomplished between the real unmanned helicopter system and the mathematical model. This dynamic model was linearized for classical controller design using small perturbation method. A Neuro-PD control system was designed for both longitudinal and lateral flight modes, and the results were compared with the PD-only control response. Simulation results show that the proposed Neuro-PD control system demonstrates better performance.

  • PDF

외측 발목 염좌 병력에 따른 정적 하지 정렬 차이: 외측 발목 염좌의 예측인자로서 정적 하지 정렬 검사의 효용성과 한계점 (Differences in Static Lower Extremity Alignment according to the History of Lateral Ankle Sprain: Efficacy and Limitation of Static Lower Limb Alignment Measurement as a Predictor of Lateral Ankle Sprain)

  • Jeon, Hyung Gyu;Ha, Sunghe;Lee, Inje;Kang, Tae Kyu;Kim, Eun Sung;Lee, Sae Yong
    • 한국운동역학회지
    • /
    • 제31권1호
    • /
    • pp.1-15
    • /
    • 2021
  • Objective: The aim of this study was to investigate 1) the difference in static lower extremity alignment (SLEA) according to a history of lateral ankle sprain (LAS), 2) to identify SLEA factors affecting LAS, and 3) to present the cut-off value and 4) the usefulness and limitations of the SLEA measurement. Method: This case-control study recruited 88 men (age: 27.78±4.69 yrs) and 39 women (age: 24.62±4.20 yrs) subjects with and without LAS. SLEA measurement protocol included Q angle, tibiofemoral angle, genu recurvatum, rear foot (RF) angle, tibal varum and torsion, navicular drop, ankle dorsiflexion range of motion (DF ROM). Independent t-test, logistic regression and receiver operating characteristic (ROC) curve were used for statistical analysis. Results: Men with a history of LAS had significantly smaller Q angles both in standing and in supine position, while women with a history of LAS had significantly greater DF ROM in non-weight bearing (NWB; p < 0.05). Logistic regression model suggests tibial varum (OR = 0.779, p = 0.021) and WB DF ROM (OR = 1.067, p = 0.045) were associated with LAS in men. In case of women, there were no significant SLEA factors for LAS, however, ROC curve analysis revealed standing RF angle (AUC = 0.647, p = 0.028) and NWB DF ROM (AUC = 0.648, p = 0.026) could be affecting factors for LAS. Conclusion: There are differences in SLEA according to the history of LAS, furthermore, the identified items were different by sex. In case of men, tibial varum and WB DF ROM affect LAS occurrence. Standing RF angle and NWB DF ROM of women could be a predictor for LAS. However, since the sensitivity and specificity in most of the SLEA measurements are low, kinematic in dynamic tasks should be considered together for a more accurate evaluation of LAS risk.

Effects of Verbal Cue for Scapular Depression During Scapular Posterior Tilt Exercise on Scapular Muscle Activities and Clavicular Tilt Angle in Subjects With Rounded Shoulder Posture and Upper Trapezius Myofascial Pain

  • Choi, Sil-ah;Cynn, Heon-seock;Shin, A-reum;Kim, Da-eun
    • 한국전문물리치료학회지
    • /
    • 제24권3호
    • /
    • pp.30-39
    • /
    • 2017
  • Background: Scapular posterior tilt (SPT) is important in the prevention of abnormal scapular movement and pain during elevation of the arm. However, previous studies have overlooked increased upper trapezius (UT) muscle activity interrupting the normal force couple of scapular motion and compensation of levator scapulae (LS) muscle activated simultaneously with UT during SPT exercise. Objects: The purpose of this study was to compare the effects of modified SPT with depression exercise versus SPT exercise on serratus anterior (SA), lower trapezius (LT), UT, and LS muscle activities and the clavicular tilt angle, in subjects with rounded shoulder posture (RSP) and myofascial pain in the UT muscle region. Methods: Eighteen subjects with RSP were recruited and randomly allocated to 2 groups; 9 in the SPT group and 9 in the SPT with depression group. All subjects met the specific RSP criteria and had myofascial pain of UT region. Depending on the allocated group, subjects performed the assigned SPT exercise and EMG data were recorded during the each exercise. Clavicular tilt angle was defined as the angle between the line joining the medial and lateral end of the clavicle and a horizontal line. Results: The SA muscle activity was significantly greater in SPT with depression than with SPT exercise (p<.05). The UT, LS muscle activity and the clavicular tilt angle was significantly lower in SPT with depression than with SPT exercise (p<.05). Conclusion: These findings were insightful because the potential risk of pain from overactivation of the UT and LS was considered, in contrast with SPT exercise. SPT with depression exercise can be implemented as an effective method to facilitate scapular muscle activity for stability and to prevent myofascial pain in the neck and shoulder.