• Title/Summary/Keyword: Lateral head of triceps brachii muscle

Search Result 2, Processing Time 0.017 seconds

A Comparison of EMG Activity for Long and Lateral Heads of Triceps Brachii Muscles According to Exercise and Forearm Positions During Triceps Strengthening Exercises (삼두근 근력 운동 시 운동 자세와 전완 자세에 따른 삼두근 장두와 외측두의 근 활성도 비교)

  • Kim, Si-Hyun;Lee, Won-Hwee;Ha, Sung-Min;Park, Kyue-Nam;Kwon, Oh-Yun
    • Physical Therapy Korea
    • /
    • v.18 no.1
    • /
    • pp.28-36
    • /
    • 2011
  • The aim of this study was to compare electromyography activity for long and lateral heads of triceps brachii muscle according to forearm positions during different triceps strengthening exercises. The muscle activities for long and lateral head of triceps brachii were measured by surface electromyography. Fifteen healthy volunteers participated for this study and performed elbow extension in three different elbow extension exercises (elbow extension in a supine position; EES, elbow extension with shoulder abduction at 90 degrees in a prone position; EESA, and elbow extension with one arm at the side of the trunk in a prone position; EESP) and forearm positions (supination, neutral, and pronation). A two-way repeated measures ANOVA was used to compare the effects of the exercise positions and forearm positions. The EMG activities of the long head of the triceps brachii increased significantly during EESP with forearm supination, whereas the activity of the lateral head of the triceps brachii increased significantly during EESA with the forearm in a neutral position (p<.05). The results of this study suggest that exercise positions and forearm positions should be considered for selectively strengthening the long and lateral heads of triceps brachii muscles.

The Kinematic Factors of Physical Motions During Air Pistol Shooting

  • Kim, Min-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.2
    • /
    • pp.197-204
    • /
    • 2016
  • Objective: The purpose of this study was to analyze the kinematic factors of motion during air pistol shooting. Method: This study aimed to investigate changes in forces during movement and determine the factors that affect changes in force during the first, middle, and last periods of shooting an air pistol. Two ground reaction force systems (force platform), SCATT (a shooting training system), and EMG (electromyogram) to measure the action potentials in the muscles of the upper body were used in this study. Four university air pistol players (age: 19.75 years, height: 175.50 cm, body mass: $69.55{\pm}11.50kg$, career length: $6.25{\pm}6years$) who are training to progress to a higher rank were enrolled. Results: In terms of the actual shooting results, the mean score in the middle section was $42.48{\pm}1.74$ points, higher than those in the first and the last periods when using SCATT. The gunpoint moved 13.48 mm more vertically than horizontally in the target trajectory. With respect to action potentials of muscles measured using EMG, the highest action potentials during the aiming-shooting segments, in order higher to lower, were seen in the trapezius (intermediate region), trapezius (superior region), deltoid (lateral), and triceps brachii (long head). The action potentials of biceps brachii and brachioradialis turned out to be high during grasping motion, which is a preparatory stage. During the final segment, muscle fatigue appeared in the deltoid (lateral), biceps brachii (long head), brachioradialis, and trapezius (intermediate region). In terms of the ground reaction force, during the first period of shooting, there was a major change in the overall direction (left-right $F_x$, forward-backward $F_y$, vertical $F_z$) of the center of the mass. Conclusion: The development and application of a training program focusing on muscle groups with higher muscle fatigue is required for players to progress to a higher rank. Furthermore, players can improve their records in the first period if they take part in a game after warming up sufficiently before shooting in order to heighten muscle action potentials, and are expected to maintain a consistent shooting motion continuously by restoring psychological stability.