• Title/Summary/Keyword: Lateral antebrachial cutaneous nerve

Search Result 7, Processing Time 0.018 seconds

A Case of Posterior Antebrachial Cutaneous Neuropathy After Injection Therapy (주사 치료 후 발생한 후부 전박 피부 신경병증 1예)

  • Bae, Jong Seok;Jang, Min Uk;Kim, Min Ky;Yoon, Gyong Jae;Kim, Byoung Joon
    • Annals of Clinical Neurophysiology
    • /
    • v.7 no.2
    • /
    • pp.130-132
    • /
    • 2005
  • Isolated posterior antebrachial cutaneous (PABC) neuropathy is rare. A 62 year-old man presented with hypesthesia over the skin region of PABC nerve territory after an injection at the proximal to the lateral epicondyle. Antidromic sensory nerve conduction studies of PABC nerve was not evoked on the affected side. Our case showed that sensory nerve conduction of PABC nerve can be performed without much difficulty and that this test is useful in confirming PABC neuropathy.

  • PDF

Clinical Features and Electrophysiological Findings of Acute Brachial Plexitis (급성상완신경총염의 임상 소견과 전기생리학적 소견)

  • Jo, Hee Young;Kim, Dae-Seong
    • Annals of Clinical Neurophysiology
    • /
    • v.10 no.1
    • /
    • pp.43-47
    • /
    • 2008
  • Background: Acute brachial plexitis is an acute idiopathic inflammatory disease affecting brachial plexus, which is characterized by initial severe pain in shoulder followed by profound weakness of affected arm. This is a retrospective study to evaluate the clinical and electrophysiological profile of acute brachial plexitis. Methods: Sixteen patients with acute brachial plexitis were sampled. The electrodiagnostic studies included motor and sensory nerve conduction studies (NCSs) of the median and ulnar, sensory NCSs of medial and lateral antebrachial cutaneous nerves, and needle electromyography (EMG) of selected muscles of upper extremities and cervical paraspinal muscles. The studies were performed on both sides irrespective of the clinical involvement. Results: In most of our patient, upper trunk was predominantly affected (14 patients, 87.50%). Only two patients showed either predominant lower trunk affection or diffuse affection of brachial plexus. All had an acute pain followed by the development of muscle weakness of shoulder girdle after a variable interval ($7{\pm}8.95$ days). Ten patients (62.50%) had severe disability. In NCSs, the most frequent abnormality was abnormal lateral antebrachial cutaneous sensory nerve action potentials (SNAPs). On needle EMG, all the patients showed abnormal EMG findings in affected muscles. Conclusions: In this study, pain was the presenting feature in all patients, and the territory innervated by upper trunk of the brachial plexus was most frequently involved. The most common NCS abnormality was abnormal SNAP in lateral antebrachial cutaneous nerve. Our findings support that the electrodiagnostic test is useful in localizing the trunk involvement in acute brachial plexitis.

  • PDF

Study on the Anatomical Pericardium Meridian Muscle in Human (수궐음 심포경근의 해부학적 고찰)

  • Park, Kyoung-Sik
    • Korean Journal of Acupuncture
    • /
    • v.22 no.1
    • /
    • pp.67-74
    • /
    • 2005
  • Objectives : This study was carried to identify the component of the Pericardium Meridian Muscle in human. Methods : The regional muscle group was divided into outer, middle, and inner layer. The inner part of body surface were opened widely to demonstrate muscles, nerve, blood vessels and to expose the inner structure of the Pericardium Meridian Muscle in the order of layers. Results We obtained the results as follows; He Perfcardium Meridian Muscle composed of the muscles, nerves and blood vessels. In human anatomy, it is present the difference between terms (that is, nerves or blood vessels which control the muscle of the Pericardium Meridian Muscle and those which pass near by the Pericardium Meridian Muscle). The inner composition of the Pericardium Meridian Muscle in human is as follows ; 1) Muscle P-1 : pectoralis major and minor muscles, intercostalis muscle(m.) P-2 : space between biceps brachialis m. heads. P-3 : tendon of biceps brachialis and brachialis m. P-4 : space between flexor carpi radialis m. and palmaris longus m. tendon(tend.), flexor digitorum superficialis m., flexor digitorum profundus m. P-5 : space between flexor carpi radialis m. tend. and palmaris longus m. tend., flexor digitorum superficialis m., flexor digitorum profundus m. tend. P-6 : space between flexor carpi radialis m. tend. and palmaris longus m. tend., flexor digitorum profundus m. tend., pronator quadratus m. H-7 : palmar carpal ligament, flexor retinaculum, radiad of flexor digitorum superficialis m. tend., ulnad of flexor pollicis longus tend. radiad of flexor digitorum profundus m. tend. H-8 : palmar carpal ligament, space between flexor digitorum superficialis m. tends., adductor follicis n., palmar interosseous m. H-9 : radiad of extensor tend. insertion. 2) Blood vessel P-1 : lateral cutaneous branch of 4th. intercostal artery, pectoral br. of Ihoracoacrornial art., 4th. intercostal artery(art) P-3 : intermediate basilic vein(v.), brachial art. P4 : intermediate antebrachial v., anterior interosseous art. P-5 : intermediate antebrarhial v., anterior interosseous art. P-6 : intermediate antebrachial v., anterior interosseous art. P-7 : intermediate antebrachial v., palmar carpal br. of radial art., anterior interosseous art. P-8 : superficial palmar arterial arch, palmar metacarpal art. P-9 : dorsal br. of palmar digital art. 3) Nerve P-1 : lateral cutaneous branch of 4th. intercostal nerve, medial pectoral nerve, 4th. intercostal nerve(n.) P-2 : lateral antebrachial cutaneous n. P-3 : medial antebrachial cutaneous n., median n. musrulocutaneous n. P-4 : medial antebrachial cutaneous n., anterior interosseous n. median n. P-5 : median n., anterior interosseous n. P-6 : median n., anterior interosseous n. P-7 : palmar br. of median n., median n., anterior interosseous n. P-8 : palmar br. of median n., palmar digital br. of median n., br. of median n., deep br. of ulnar n. P-9 : dorsal br. of palmar digital branch of median n. Conclusions : This study shows some differences from already established study on meridian Muscle.

  • PDF

Anatomy of Large Intestine Meridian Muscle in human (수양명경근(手陽明經筋)의 해부학적(解剖學的) 고찰(考察))

  • Sim Young;Park Kyoung-Sik;Lee Joon-Moo
    • Korean Journal of Acupuncture
    • /
    • v.19 no.1
    • /
    • pp.15-23
    • /
    • 2002
  • This study was carried to identify the component of Large Intestine Meridian Muscle in human, dividing into outer, middle, and inner part. Brachium and antebrachium were opened widely to demonstrate muscles, nerve, blood vessels and the others, displaying the inner structure of Large Intestine Meridian Muscle. We obtained the results as follows; 1. Meridian Muscle is composed of the muscle, nerve and blood vessels. 2. In human anatomy, it is present the difference between a term of nerve or blood vessels which control the muscle of Meridian Muscle and those which pass near by Meridian Muscle. 3. The inner composition of meridian muscle in human arm is as follows. 1) Muscle; extensor digitorum tendon(LI-1), lumbrical tendon(LI-2), 1st dosal interosseous muscle(LI-3), 1st dosal interosseous muscle and adductor pollicis muscle(LI-4), extensor pollicis longus tendon and extensor pollicis brevis tendon(LI-5), adductor pollicis longus muscle and extensor carpi radialis brevis tendon(LI-6), extensor digitorum muscle and extensor carpi radialis brevis mucsle and abductor pollicis longus muscle(LI-7), extensor carpi radialis brevis muscle and pronator teres muscle(LI-8), extensor carpi radialis brevis muscle and supinator muscle(LI-9), extensor carpi radialis longus muscle and extensor carpi radialis brevis muscle and supinator muscle(LI-10), brachioradialis muscle(LI-11), triceps brachii muscle and brachioradialis muscle(LI-12), brachioradialis muscle and brachialis muscle(LI-13), deltoid muscle(LI-14, LI-15), trapezius muscle and supraspinous muscle(LI-16), platysma muscle and sternocleidomastoid muscle and scalenous muscle(LI-17, LI-18), orbicularis oris superior muscle(LI-19, LI-20) 2) Nerve; superficial branch of radial nerve and branch of median nerve(LI-1, LI-2, LI-3), superficial branch of radial nerve and branch of median nerve and branch of ulna nerve(LI-4), superficial branch of radial nerve(LI-5), branch of radial nerve(LI-6), posterior antebrachial cutaneous nerve and branch of radial nerve(LI-7), posterior antebrachial cutaneous nerve(LI-8), posterior antebrachial cutaneous nerve and radial nerve(LI-9, LI-12), lateral antebrachial cutaneous nerve and deep branch of radial nerve(LI-10), radial nerve(LI-11), lateral antebrachial cutaneous nerve and branch of radial nerve(LI-13), superior lateral cutaneous nerve and axillary nerve(LI-14), 1st thoracic nerve and suprascapular nerve and axillary nerve(LI-15), dosal rami of C4 and 1st thoracic nerve and suprascapular nerve(LI-16), transverse cervical nerve and supraclavicular nerve and phrenic nerve(LI-17), transverse cervical nerve and 2nd, 3rd cervical nerve and accessory nerve(LI-18), infraorbital nerve(LI-19), facial nerve and infraorbital nerve(LI-20). 3) Blood vessels; proper palmar digital artery(LI-1, LI-2), dorsal metacarpal artery and common palmar digital artery(LI-3), dorsal metacarpal artery and common palmar digital artery and branch of deep palmar aterial arch(LI-4), radial artery(LI-5), branch of posterior interosseous artery(LI-6, LI-7), radial recurrent artery(LI-11), cephalic vein and radial collateral artery(LI-13), cephalic vein and posterior circumflex humeral artery(LI-14), thoracoacromial artery and suprascapular artery and posterior circumflex humeral artery and anterior circumflex humeral artery(LI-15), transverse cervical artery and suprascapular artery(LI-16), transverse cervical artery(LI-17), SCM branch of external carotid artery(LI-18), facial artery(LI-19, LI-20)

  • PDF

Treatment of Lateral Antebrachial Cutaneous Neuropathy by Biceps Tenoplasty (상완이두건 성형술을 이용한 외측 상완 표피 신경증의 치료 - 1예 보고 -)

  • Rhyou, In-Hyeok;Suh, Bo-Gun;Chung, Chae-Ik;Park, Kyung-Jun;Kang, Hyun-Suk
    • Clinics in Shoulder and Elbow
    • /
    • v.14 no.1
    • /
    • pp.89-93
    • /
    • 2011
  • Purpose: We want to report on one patient who presented with lateral forearm pain caused by compression neuropathy of the lateral antebrachial cutaneous nerve. Materials and Methods: A female patient was managed by operative treatment (biceps tenoplasty) after failure with conservative treatment for 6 weeks. One year later, we evaluated the clinical symptoms and biceps tendon problems such as supination weakness or rupture after the tenoplasty. Results: Her symptom completely subsided immediately at the first postoperative day and her recovery was uneventful. Supination weakness and rupture of the distal biceps tendon were not found after the operation. Conclusion: We have reported here on a case of successful management of lateral antebrachial cutaneous neuropathy by performing biceps tenoplasty, along with a review of the previously published articles.

A Case Report of Nerve Entrapment Syndrome with Lymphedema (림프부종에 의한 신경포착증후군: 증례 보고)

  • Kim, Hong-Ryul;Ahn, Duck-Sun
    • Archives of Plastic Surgery
    • /
    • v.37 no.1
    • /
    • pp.95-98
    • /
    • 2010
  • Purpose: One of the most common cause of upper extremity lymphedema is breast cancer surgery. We experienced the nerve entrapment syndrome which was associated with postmastectomy lymphedema. To the best of our knowledge, this is the first case report of lymphedema induced nerve entrapment syndrome on upper extremity in Korea. Methods: A 54-year-old woman presented with a tingling sensation on her right hand, which had been present for 1 year. On her history, she had a postmastectomy lymphedema on her right upper extremity for 20 years. Initial electromyography (EMG) showed that the ampulitude of the median, ulnar, and dorsal ulnar cutaneous nerve were decreased, and conduction block was also seen in median nerve across the wrist. In needle EMG, incomplete interference patterns were observed in the muscles innervated by median and ulnar nerves. In conclusion, electrophysiologic study and clinical findings suggested right median and ulnar neuropathy below the elbow. Therefore, we performed surgical procedures, which were release of carpal tunnel, Guyon's canal, and cubital tunnel. Results: The postoperative course was uneventful until the first two years. The tingling sensation and claw hand deformity were improved, however, the motor function decreased progressively. In 7 years after the operation, patient could not flex her wrist and thumb sufficiently. EMG which was performed recently showed that ulnar motor response was of low ampulitude. Moreover, median, ulnar, dorsal ulnar cutaneous, lateral antecubital cutaneous and median antebrachial cutaneous sensory response were unobtainable. Abnormal spontaneous activities were observed in upper arm muscles. In conclusion, multiple neuropathies were eventually developed at above elbow level. Conclusion: On treating nerve entrapments associated with lymphedema, medical professionals should be fully aware of the possibility of unpredictable results after the surgery, because of the pathophysiologic traits of chronic lymphedema.

Relationship to the superficial radial nerve and anatomic variations of the first extensor compartment in Thai population: a basis for successful de Quervain tenosynovitis treatment

  • Krittameth Pasiphol;Sithiporn Agthong;Napatpong Thamrongskulsiri;Sirikorn Dokthien;Thanasil Huanmanop;Tanat Tabtieng;Vilai Chentanez
    • Anatomy and Cell Biology
    • /
    • v.57 no.2
    • /
    • pp.246-255
    • /
    • 2024
  • Knowledge of the superficial radial nerve (SRN) relationship and anatomic variations of the first extensor compartment (1st EC) will contribute to a better outcome of de Quervain tenosynovitis treatment. We dissected 87 embalmed cadaveric wrists to determine the relationship of the SRN, the 1st EC length, distance from the proximal and distal 1st EC borders to radial styloid process (RSP), abductor pollicis longus (APL) and extensor pollicis brevis (EPB) tendon slip numbers, and the presence of septum. Our results revealed SRN crossing over the 1st EC in 59.5%. The lateral branch of the superficial radial nerve to the 1st EC midline in most cases (61.9%) except for one specimen, where lateral antebrachial cutaneous nerve was the closest. Distances from proximal and distal 1st EC borders to the RSP were 19.7±4.1 mm and 7.6±1.8 mm, respectively. Extensor retinaculum (ER) width over 1st EC (1st EC length) was 14.8±3.2 mm. Complete and incomplete septa were found in 17.2%, and 42.5%, respectively. The most frequent APL tendon slip number in the compartment was two in overall 47 specimens (54.0%). Almost all compartments (85 specimens; 97.7%) contained one EPB tendon slip. We detected bilateral EPB absence in one cadaver. Moreover, we recorded a tendon slip from extensor pollicis longus traveling into 1st EC bilaterally in one cadaver and observed the EPB muscle belly extension into 1st EC in 9 wrists. Awareness of 1st EC anatomic variations would be essential for successful surgical and nonsurgical outcomes.