• 제목/요약/키워드: Lateral and Torsional vibration

Search Result 63, Processing Time 0.02 seconds

Aerostatic instability mode analysis of three-tower suspension bridges via strain energy and dynamic characteristics

  • Zhang, Wen-ming;Qian, Kai-rui;Wang, Li;Ge, Yao-jun
    • Wind and Structures
    • /
    • v.29 no.3
    • /
    • pp.163-175
    • /
    • 2019
  • Multispan suspension bridges make a good alternative to single-span ones if the crossed strait or river width exceeds 2-3 km. However, multispan three-tower suspension bridges are found to be very sensitive to the wind load due to the lack of effective longitudinal constraint at their central tower. Moreover, at certain critical wind speed values, the aerostatic instability with sharply deteriorating dynamic characteristics may occur with catastrophic consequences. An attempt of an in-depth study on the aerostatic stability mode and damage mechanism of three-tower suspension bridges is made in this paper based on the assessment of strain energy and dynamic characteristics of three particular three-tower suspension bridges in China under different wind speeds and their further integration into the aerostatic stability analysis. The results obtained on the three bridges under study strongly suggest that their aerostatic instability mode is controlled by the coupled action of the anti-symmetric torsion and vertical bending of the two main-spans' deck, together with the longitudinal bending of the towers, which can be regarded as the first-order torsion vibration mode coupled with the first-order vertical bending vibration mode. The growth rates of the torsional and vertical bending strain energy of the deck after the aerostatic instability are higher than those of the lateral bending. The bending and torsion frequencies decrease rapidly when the wind speed approaches the critical value, while the frequencies of the anti-symmetric vibration modes drop more sharply than those of the symmetric ones. The obtained dependences between the critical wind speed, strain energy, and dynamic characteristics of the bridge components under the aerostatic instability modes are considered instrumental in strength and integrity calculation of three-tower suspension bridges.

Optimal assessment and location of tuned mass dampers for seismic response control of a plan-asymmetrical building

  • Desu, Nagendra Babu;Dutta, Anjan;Deb, S.K.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.4
    • /
    • pp.459-477
    • /
    • 2007
  • A bi-directional tuned mass damper (BTMD) in which a mass connected by two translational springs and two viscous dampers in two orthogonal directions has been introduced to control coupled lateral and torsional vibrations of asymmetric building. An efficient control strategy has been presented in this context to control displacements as well as acceleration responses of asymmetric buildings having asymmetry in both plan and elevation. The building is idealized as a simplified 3D model with two translational and a rotational degrees of freedom for each floor. The principles of rigid body transformation have been incorporated to account for eccentricity between center of mass and center of rigidity. The effective and robust design of BTMD for controlling the vibrations in structures has been presented. The redundancy of optimum design has been checked. Non dominated sorting genetic algorithm (NSGA) has been used for tuning optimum stages and locations of BTMDs and its parameters for control of vibration of seismically excited buildings. The optimal locations have been observed to be reasonably compact and practically implementable.

Simplified elastic design checks for torsionally balanced and unbalanced low-medium rise buildings in lower seismicity regions

  • Lam, Nelson T.K.;Wilson, John L.;Lumantarna, Elisa
    • Earthquakes and Structures
    • /
    • v.11 no.5
    • /
    • pp.741-777
    • /
    • 2016
  • A simplified approach of assessing torsionally balanced (TB) and torsionally unbalanced (TU) low-medium rise buildings of up to 30 m in height is presented in this paper for regions of low-to-moderate seismicity. The Generalised Force Method of Analysis for TB buildings which is illustrated in the early part of the paper involves calculation of the deflection profile of the building in a 2D analysis in order that a capacity diagram can be constructed to intercept with the acceleration-displacement response spectrum diagram representing seismic actions. This approach of calculation on the planar model of a building which involves applying lateral forces to the building (waiving away the need of a dynamic analysis and yet obtaining similar results) has been adapted for determining the deflection behaviour of a TU building in the later part of the paper. Another key original contribution to knowledge is taking into account the strong dependence of the torsional response behaviour of the building on the periodic properties of the applied excitations in relation to the natural periods of vibration of the building. Many of the trends presented are not reflected in provisions of major codes of practices for the seismic design of buildings. The deflection behaviour of the building in response to displacement controlled (DC) excitations is in stark contrast to behaviour in acceleration controlled (AC), or velocity controlled (VC), conditions, and is much easier to generalise. Although DC conditions are rare with buildings not exceeding 30 m in height displacement estimates based on such conditions can be taken as upper bound estimates in order that a conservative prediction of the displacement profile at the edge of a TU building can be obtained conveniently by the use of a constant amplification factor to scale results from planar analysis.