• Title/Summary/Keyword: Lateral and Torsional vibration

Search Result 63, Processing Time 0.027 seconds

Spectral Element Modeling of the Rotating Shafts on Bearing Supports (베어링으로 지지된 회전축의 스펙트럴요소 모델링)

  • Lee, Jae-Sng;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.826-830
    • /
    • 2008
  • In this paper, the vibration of a rotating shaft with a thin rigid disk on bearing supports is considered. It is assumed that the shaft has uniform, circular cross-section. Based on the Timoshenko-beam theory, the transverse displacements and slops in two lateral directions, the axial displacement, and the torsional deformation are considered. And flexible supports are used to analyse the bearings. A spectral element model is developed for the vibration analysis of the rotating shaft with a thin rigid disk, which is modeled by two shaft elements and a thin rigid disk element. The result of vibration analysis by finite element method is compared to the result of this research.

  • PDF

Spectral Element Modeling of Rotating Shafts by Using Variational Method (변분법을 이용한 회전축의 스펙트럴요소 모델링)

  • Yong, Suk-Jin;Lee, Jae-Sng;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.923-926
    • /
    • 2007
  • In this paper, the vibration of a rotating shaft with a thin rigid disk is considered. It is assumed that the shaft has uniform, circular cross-section. Based on the Timoshenko-beam theory, the transverse displacements and slops in two lateral directions, the axial displacement, and the torsional deformation are considered. A spectral element model is developed by using the variation method for the vibration analysis of the rotating shaft with a thin rigid disk, which is modeled by two shaft elements and a thin rigid disk element. The result of vibration analysis by finite element method is compared to the result of this research.

  • PDF

Buffeting response control of a long span cable-stayed bridge during construction using semi-active tuned liquid column dampers

  • Shum, K.M.;Xu, Y.L.;Guo, W.H.
    • Wind and Structures
    • /
    • v.9 no.4
    • /
    • pp.271-296
    • /
    • 2006
  • The frequency of a traditional tuned liquid column damper (TLCD) depends solely on the length of liquid column, which imposes certain restrictions on its application to long span cable-stayed bridges during construction. The configuration of a cable-stayed bridge varies from different construction stages and so do its natural frequencies. It is thus difficult to apply TLCD with a fixed configuration to the bridge during construction or it is not economical to design a series of TLCD with different liquid lengths to suit for various construction stages. Semi-active tuned liquid column damper (SATLCD) with adaptive frequency tuning capacity is studied in this paper for buffeting response control of a long span cable-stayed bridge during construction. The frequency of SATLCD can be adjusted by active control of air pressures inside the air chamber at the two ends of the container. The performance of SATLCD for suppressing combined lateral and torsional vibration of a real long span cable-stayed bridge during construction stage is numerically investigated using a finite element-based approach. The finite element model of SATLCD is also developed and incorporated into the finite element model of the bridge for predicting buffeting response of the coupled SATLCD-bridge system in the time domain. The investigations show that with a fixed container configuration, the SATLCD with adaptive frequency tuning can effectively reduce buffeting response of the bridge during various construction stages.

Free Vibration Analysis of a 3-dimensional Cable-Stayed Bridge with the Unsymmetric Girder Cross-section (비대칭단면 주형을 갖는 3차원 사장교의 고유진동해석)

  • Kim, Chul Young;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.15-26
    • /
    • 1991
  • The lateral forces such as the earthquake and wind my cause the torsion to be coupled with the lateral bending in the gider, the cross-section of wich has only one axis of symmetry. This induces additional stresses especially in cables arranged in double-planes. Since this effect cannot be considered by using the conventional frame elements, the stiffness and the mass matrices of the geometrically nonlinear thin-walled frame element are developed in this study to model the girder. The equivalent modulus of elasticity proposed by Ernst is used for the cable elements. Verification of the present theory is made through a numerical example. Then, the free vibration of a three dimensional cable-stayed bridge is analyzed to study the coupled flexural-torsional behavior.

  • PDF

Analysis of Dynamic Characteristics Change of Middle-Sized Bus by Attachment of Trim Components (트림 부품의 부착에 따른 중형 버스의 동특성 변화 분석)

  • 이상범;임홍재
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.1
    • /
    • pp.88-93
    • /
    • 2004
  • In general, a fundamental structural design consideration for an automobile is the overall dynamic behavior in bending and torsion. Dynamic behavior of the automobile are mainly influenced by the structural stiffness of B.I.W.(body-in-white) and the physical property of trim components. In this paper, the modeling techniques for various trim components of middle-sized bus are presented, and the dynamic effects of the trim components on the vibration characteristics of the bus are investigated. The $1^{st}$ torsional frequency is decreased by attaching windshield and backlite to the B.I.W., but the $1^{st}$ vertical bending frequency and the $1^{st}$ lateral bending frequency are increased. The natural frequencies of the bus are decreased by attaching doors and windows. And also, the natural frequencies of the bus are large decreased by attaching seats, instrument panel etc. The study shows that the dynamic characteristics of the bus can be effectively predicted in the initial design stage.

Torsional Vibration Control of a Rotating Chamber Shaft System Using Electrorheological Fluid (ER 유체를 이용한 회전식 약실 축계의 비틀림 진동 제어)

  • Lim, Seung-Chul;Kim, Ki-Kap;Kil, Seong-Jin;Shim, Jeong-Soo;Cha, Ki-Up
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.17-24
    • /
    • 2011
  • It is reported that an intermittently rotating chamber system will improve the ratio of firepower to armament space in the case of mid-calibre automatic guns. However, the parallel index, which is a main component of the system, tends to be torsionally flexible due to the low lateral stiffness of cam followers on the index turret. This may cause the shaft system connecting the turret with the chamber prone to considerable residual torsional vibration so that serious misalignment problems occur during ammunition loading and firing processes. Herein, an electrorhelogical (ER) fluid actuator that can suppress such vibrations and the associated semiactive control algorithm are proposed. By mathematical modeling and computer simulations, the performance of the entire system is proved satisfactory.

Variability analysis on modal parameters of Runyang Bridge during Typhoon Masta

  • Mao, Jian-Xiao;Wang, Hao;Xun, Zhi-Xiang;Zou, Zhong-Qin
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.653-663
    • /
    • 2017
  • The modal parameters of the deck of Runyang Suspension Bridge (RSB) as well as their relationships with wind and temperature are studied based on the data recorded by its Structural Health Monitoring System (SHMS). Firstly, frequency analysis on the vertical responses at the two sides of the deck is carried out to distinguish the vertical and torsional vibration modes. Then, the vertical, torsional and lateral modal parameters of the deck of RSB are identified using Hilbert-Huang Transform (HHT) and validated by the identified results before RSB was opened to traffic. On the basis of this, the modal frequencies and damping ratios of RSB during the whole process of Typhoon Masta are obtained. And the correlation analysis on the modal parameters and wind environmental factors is then conducted. Results show that the HHT can achieve an accurate modal identification of RSB and the damping ratios show an obvious decay trend as the frequencies increase. Besides, compared to frequencies, the damping ratios are more sensitive to the environmental factors, in particular, the wind speed. Further study on configuring the variation law of modal parameters related with environmental factors should be continued.

System identification of the suspension tower of Runyang Bridge based on ambient vibration tests

  • Li, Zhijun;Feng, Dongming;Feng, Maria Q.;Xu, Xiuli
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.523-538
    • /
    • 2017
  • A series of field vibration tests are conducted on the Runyang Suspension Bridge during both the construction and operational stages. The purpose of this study is devoted to the analysis of the dynamic characteristics of the suspension tower. After the tower was erected, an array of accelerometers was deployed to study the evolution of its modal parameters during the construction process. Dynamic tests were first performed under the freestanding tower condition and then under the tower-cable condition after the superstructure was installed. Based on the identified modal parameters, the effect of the pile-soil-structure interaction on dynamic characteristics of the suspension tower is investigated. Moreover, the stiffness of the pile foundation is successfully identified using a probabilistic finite model updating method. Furthermore, challenges of identifying the dynamic properties of the tower from the coupled responses of the tower-cable system are discussed in detail. It's found that compared with the identified results from the freestanding tower, the longitudinal and torsional natural frequencies of the tower in the tower-cable system have changed significantly, while the lateral mode frequencies change slightly. The identified modal results from measurements by the structural health monitoring system further confirmed that the vibrations of the bridge subsystems (i.e., the tower, the suspended deck and the main cable) are strongly coupled with one another.

Structural identification of Humber Bridge for performance prognosis

  • Rahbari, R.;Niu, J.;Brownjohn, J.M.W.;Koo, K.Y.
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.665-682
    • /
    • 2015
  • Structural identification or St-Id is 'the parametric correlation of structural response characteristics predicted by a mathematical model with analogous characteristics derived from experimental measurements'. This paper describes a St-Id exercise on Humber Bridge that adopted a novel two-stage approach to first calibrate and then validate a mathematical model. This model was then used to predict effects of wind and temperature loads on global static deformation that would be practically impossible to observe. The first stage of the process was an ambient vibration survey in 2008 that used operational modal analysis to estimate a set of modes classified as vertical, torsional or lateral. In the more recent second stage a finite element model (FEM) was developed with an appropriate level of refinement to provide a corresponding set of modal properties. A series of manual adjustments to modal parameters such as cable tension and bearing stiffness resulted in a FEM that produced excellent correspondence for vertical and torsional modes, along with correspondence for the lower frequency lateral modes. In the third stage traffic, wind and temperature data along with deformation measurements from a sparse structural health monitoring system installed in 2011 were compared with equivalent predictions from the partially validated FEM. The match of static response between FEM and SHM data proved good enough for the FEM to be used to predict the un-measurable global deformed shape of the bridge due to vehicle and temperature effects but the FEM had limited capability to reproduce static effects of wind. In addition the FEM was used to show internal forces due to a heavy vehicle to to estimate the worst-case bearing movements under extreme combinations of wind, traffic and temperature loads. The paper shows that in this case, but with limitations, such a two-stage FEM calibration/validation process can be an effective tool for performance prognosis.

A Rotordynamics Analysis of High Efficiency and Hybrid Type Vacuum Pump (고효율 복합형 진공펌프의 로터다이나믹 해석)

  • Kim, Byung-Ok;Lee, An-Sung;Noh, Myung-Keun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.967-975
    • /
    • 2007
  • A rotordynamic analysis was performed with a dry vacuum pump, which is a major equipment in modern semiconductor and LCD manufacturing processes. The system is composed of screw rotors, lobes picking air, helical gears, driving motor, and support rolling element bearings of rotors and motor. The driving motor-screw rotor system has a rated speed of 6,300 rpm, and was modeled utilizing a rotordynamic FE method for analysis, which was verified through 3-D FE analysis and experimental modal analysis. As loadings on the bearings due to the gear action were significant in the system considered, each resultant bearing load was calculated by considering the generalized forces of the gear action as well as the rotor itself. Each resultant bearing loading was used in calculating each stiffness of rolling element bearings. Design goals are to achieve wide separation margins of lateral and torsional critical speeds, and favorable unbalance responses of the rotor in the operating range. Then, a complex rotordynamic analysis of the system was carried out to evaluate its forward synchronous critical speeds, whirl natural frequencies and mode shapes, unbalance responses under various unbalance locations, and torsional interference diagram. Results show that the entire system is well designed in the operating range. In addition, the procedure of rotordynamic analysis for dry vacuum pump rotor-bearing system was proposed and established.