• Title/Summary/Keyword: Lateral and Torsional vibration

Search Result 63, Processing Time 0.033 seconds

A Study on Noise and Vibration Reduction of an NC Lathe Gear Box (NC 선반 기어박스의 소음.진동 저감에 관한 연구)

  • Choi, Young-Hyu;Park, Seon-Kyun;Bae, Byung-Tae;Jung, Taek-Soo;Kim, Chung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.94-99
    • /
    • 2000
  • When operating NC lathe, gear box which is equipped with gear train and spindle sometimes generates loud noise and excessive vibrations. In order to identify their causes, In this study, torsional and lateral vibration characteristics including critical speeds of the gear train-spindle system are first analyzed by using torsional and lateral vibration models of the gear train and shafts. Natural frequencies and modes of the gear box structure are also analyzed by impulse hammer test. Furthermore, measured vibration and noise signals are analyzed and compared with theoretical analysis results. At last it is concluded that the cause of the excessive mise and vibration is the resonance between gear meshing frequency including its side bands, shaft bending and torsional vibration frequencies, and the natural frequencies of th gear box structure. Consequently the noise and vibration levels are greatly reduced by avoiding resonance between them through the redesign of the gear module.

  • PDF

Vibration Analysis of a Gear Train - Spindle System for an NC Lathe Gear Box (NC선반 기어박스의 기어열 - 축계 진동해석)

  • 최영휴;박선균;배병태;정택수;김청수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.216-221
    • /
    • 2000
  • In this study, two mathematical models are first constructed to analyze vibration characteristics of a gear train - spindle system of an NC lathe gear box. One is a lumped parameter model which is used for calculating natural frequencies of the torsional vibration, the other is a finite element model for analyzing lateral vibration and critical speeds of the spindle system. In addition, this study examines some possible resonance conditions such as gear mesh frequencies, 1X shaft rpm frequencies over whole operating speed range, and so on. The results may be helpful to design a machine tool gear box with low noise and vibration.

  • PDF

A Mathematical Approach for Analysis of Modes in Pickup Actuators (운동방정식에 의한 픽업 액추에이터 모드 분석)

  • Lee, Kyung Taek
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.73-78
    • /
    • 2013
  • In this paper, the vibration for a pickup actuator is described by mathematically analyzing its suspension configuration and motion, confined to lateral and torsional directions of suspensions. In order to prove the accuracy of this result, it is compared to a finite element analysis. Also it is shown that modal frequencies can be modified by changing design parameters in mathematical motion expressions.

  • PDF

Effect of rigid connection to an asymmetric building on the random seismic response

  • Taleshian, Hamed Ahmadi;Roshan, Alireza Mirzagoltabar;Amiri, Javad Vaseghi
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.183-200
    • /
    • 2020
  • Connection of adjacent buildings with stiff links is an efficient approach for seismic pounding mitigation. However, use of highly rigid links might alter the torsional response in asymmetric plans and although this was mentioned in the literature, no quantitative study has been done before to investigate the condition numerically. In this paper, the effect of rigid coupling on the elastic lateral-torsional response of two adjacent one-story column-type buildings has been studied by comparison to uncoupled structures. Three cases are considered, including two similar asymmetric structures, two adjacent asymmetric structures with different dynamic properties and a symmetric system adjacent to an adjacent asymmetric one. After an acceptable validation against the actual earthquake, the traditional random vibration method has been utilized for dynamic analysis under Ideal white noise input. Results demonstrate that rigid coupling may increase or decrease the rotational response, depending on eccentricities, torsional-to-lateral stiffness ratios and relative uncoupled lateral stiffness of adjacent buildings. Results are also discussed for the case of using identical cross section for all columns supporting eachplan. In contrast to symmetric systems, base shear increase in the stiffer building may be avoided when the buildings lateral stiffness ratio is less than 2. However, the eccentricity increases the rotation of the plans for high rotational stiffness of the buildings.

Developing a Computer Program for the Design of Marine Diesel Engine Shafting (디이젤기관 추진축계 설계를 위한 전산프로그램 개발에 관한 연구)

  • 김영만;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.37-48
    • /
    • 1984
  • For the designing propulsion shafting of ship, shaft diameters are usually calculated according to the Society's rules and other scantlings such as a shaft length, coupling and taper parts, etc., are decided according to calculated diameters. And then, the torsional vibration, the lateral vibration and shaft alignment should be reviewed to check whether the resonance points of torsional or lateral vibration appear within the normal operating speed range and the shaft alignment is reasonable. If the results of calculations are unsatisfactory, this process should be repeated until the final condition is determined and the process of this work takes much time to carry out. To simplify the above tedious processes, authors have developed a computer program to fulfill the above design processes at once. This program takes aim at reducing the manual calculating work associated with the propulsion shafting of ship. To confirm the availability of developed computer program, several propulsion shaftings which are driven by diesel engines, have been analysed. The results calculated by authors developed computer program show comparatively good agreements with those of the actual propulsion shafting.

  • PDF

Effect of Initial Uniform Moment on Lateral Free Vibration of Arches (등분포 모멘트를 받는 아치의 횡 자유진동)

  • 염응준;한택희;임남형;강영종
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.3-10
    • /
    • 2002
  • Recently, arches are used structurally because of their high in-plane stiffness and strength, which result from their ability to transmit most of the applied loading by axial forces actions, so that the bending actions are reduced. On the other hand, the resistances of arches to (out-of-plane,) flexural-torsional behavior depend on the rigidities EI/sub y/, for lateral bending, GJ for Uniform torsion, and EI/sub w/ for warping torsion which are related to axial stress for flexural-torsional behavior. The resistance of an arch to out-of-plane behavior may be reduced by its in-plane curvature, and so it may require significant lateral bracing. Thus. it is supposed that In-plane preloading which cause an axial stress, have an effect on out-of-plane free vibration behavior of arches. Because axial stresses caused increase or decrease out-of-plane stiffness. But study about this substance is insufficient. In this thesis, We will study an effect of preloading on lateral free vibration of arches, using finite element method based on Kang and Yoo's curved beam theory (about curved beam element have 7 degree of freedom including warping) with FORTRAN programming.

  • PDF

Tuned mass dampers for torsionally coupled systems

  • Pansare, A.P.;Jangid, R.S.
    • Wind and Structures
    • /
    • v.6 no.1
    • /
    • pp.23-40
    • /
    • 2003
  • The steady state response of a torsionally coupled system with tuned mass dampers (TMDs) to external wind-induced harmonic excitation is presented. The torsionally coupled system is considered as one-way eccentric system. The eccentricity considered in the system is accidental eccentricity only. The performance of single tuned mass damper (TMD) optimally designed without considering the torsion is investigated for the torsionally coupled system and found that the effectiveness of a single TMD is significantly reduced due to torsion in the system. However, the design of TMD system without considering the torsion is only justified for torsionally stiff systems. Further, the optimum parameters of a single TMD considering the accidental eccentricity are obtained using numerical searching technique for different values of uncoupled torsional to lateral frequency ratio and aspect ratio of the system. The optimally designed single TMD system is found to be less effective for torsionally coupled system in comparison to uncoupled system. This is due to the fact that a torsionally coupled system has two natural frequencies of vibration, as a result, at least two TMDs are required which can control both lateral and torsional response of the system. The optimum damper parameters of different alternate arrangements such as (i) two identical TMDs placed at opposite corners, (ii) two independent TMDs and (iii) four TMDs are evaluated for minimum response of the system. The comparative performance of the above TMDs arrangements is also studied for both torsionally coupled and uncoupled systems. It is found that four TMDs arrangement is quite effective solution for vibration control of torsionally coupled system.

Control of Coupled Lateral Torsional Vibration of Tall Building under Dynamic Lateral Loads (동적 하중을 받는 횡-비틀림 방향이 조합된 고층건물의 진동 제어에 관한 연구)

  • 황재승;민경원;홍성목
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.28-33
    • /
    • 1995
  • 본 논문에서는 조합변형이 각각의 모드에 따라 매우 다양하게 달라질 수 있으며 각 모드의 역학적 거동에 따라 제어기의 최적 위치가 달라지는 것을 보였으며 이러한 최적의 위치를 효과적으로 파악할 수 있는 각 모드의 기하학적인 중심에 대하여 기술하였다.

  • PDF

Seismic torsional vibration in elevated tanks

  • Dutta, Sekhar Chandra;Murty, C.V.R.;Jain, Sudhir K.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.6
    • /
    • pp.615-636
    • /
    • 2000
  • Some elevated water tanks have failed due to torsional vibrations in past earthquakes. The overall axisymmetric structural geometry and mass distribution of such structures may leave only a small accidental eccentricity between centre of stiffness and centre of mass. Such a small accidental eccentricity is not expected to cause a torsional failure. This paper studies the possibility of amplified torsional behaviour of elevated water tanks due to such small accidental eccentricity in the elastic as well as inelastic range; using two simple idealized systems with two coupled lateral-torsional degrees of freedom. The systems are capable of retaining the characteristics of two extreme categories of water tanks namely, a) tanks on staging with less number of columns and panels and b) tanks on staging with large number of columns and panels. The study shows that the presence of a small eccentricity may lead to large displacement of the staging edge in the elastic range, if the torsional-to-lateral time period ratio $({\tau})$ of the elevated tanks lies within a critical range of 0.7< ${\tau}$ <1.25. Inelastic behaviour study reveals that such excessive displacement in some of the reinforced concrete staging elements may cause unsymmetric yielding. This may lead to progressive strength deterioration through successive yielding in same elements under cyclic loading during earthquakes. Such localized strength drop progressively develop large strength eccentricity resulting in large localized inelastic displacement and ductility demand, leading to failure. So, elevated water tanks should have ${\tau}$ outside the said critical range to avoid amplified torsional response. The tanks supported on staging with less number of columns and panels are found to have greater torsional vulnerability. Tanks located near faults seem to have torsional vulnerability for large ${\tau}$.