• 제목/요약/키워드: Lateral Tunnel

Search Result 186, Processing Time 0.028 seconds

Operative Treatment of the Tarsal Tunnel Syndrome Caused by Tarsal Coalition (족근골 결합에 의한 족근관 증후군의 수술적 치료)

  • Kwon, Duck-Joo;Park, Sang-Wook
    • Journal of Korean Foot and Ankle Society
    • /
    • v.11 no.2
    • /
    • pp.238-243
    • /
    • 2007
  • Purpose: Study was to evaluate the operative results for tarsal coalition with tarsal tunnel syndrome. Materials and Methods: From Jan. 2005 to Mar. 2006, among a number of patients who were diagnosed with tarsal tunnel syndrome caused by tarsal coalition and treated surgically, 5 patients were closely observed for more than 12 months. All cases were talocalcaneal coalition and there were two male and three female patients with a mean age of 36 years (22-50 years). We used the Takakura rating scale as clinical evaluation. Results: All five patients had a burning pain in the sole or extended to toes and showed positive Tinel's sign. Sensory disturbances were observed in the distribution of the medial plantar nerves in four patients and in the area of the medial and lateral plantar nerves in one. Atrophy and weakness of the plantar muscles were seen in two patients. The mean Takakura scale in preoperative and postoperative was 3.4 points (1 to 5 points), 8.6 point (6 to 10 points). The mean follow up was 14.4 months (12 to 16 months). The postoperative results were excellent in two patients, good in two and fair in one. As postoperative complications, there were persistent swelling in one patient and a flexion disturbance of Hallux in one. Conclusion: The coalition resection performed on tarsal tunnel syndrome caused by tarsal coalition could improve a level of pains and neurological symptoms significantly. However, since there were some undesirable complications, a detailed explanation to patients is required prior to surgical treatment and study of such complications may be required.

  • PDF

An Experimental Study on Flapping Motion of Forward Flight Condition used to Articulated Hub Rotor (관절형 허브 로터를 이용한 전진비행조건에서의 플래핑 운동에 대한 실험적 연구)

  • Ryi, Jae-Ha;Back, Dong-Min;Rhee, Wook;Choi, Jong-Soo;Song, Keun Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.261-267
    • /
    • 2013
  • In this paper, wind tunnel test and analytical prediction are compared for result of flapping motion in helicopter forward flight condition. Tests were performed at low speed wind tunnel at Chungnam National University, test section of wind tunnel has 1.8 by 1.8 meter open-jet test section area. According to the results of measured data for aerodynamic performance of model rotor in forward flight. It has to observed the difference of analytical and measured results of power coefficient for fixed thrust coefficient. And calculated and measured data of helicopter rotor flapping angles in forward flight are compared for a model rotor in a wind tunnel. A test was conducted to verify the measured data of coning and lateral/longitudinal flapping angle with predicted values.

A Study on the Stability of Twin Tunnels in Anisotropic Rocks Using Scaled Model Tests (이방성 암반내 쌍굴터널의 안정성에 대한 모형실험 연구)

  • Kim, Jong-Woo;Kim, Myeong-Kyun
    • Tunnel and Underground Space
    • /
    • v.22 no.3
    • /
    • pp.205-213
    • /
    • 2012
  • In this study, scaled model tests were performed to investigate the stability of twin tunnels constructed in anisotropic rocks with $30^{\circ}$ inclined bedding planes under the condition of lateral pressure ratio, 2. Five types of test models which had respectively different pillar widths and shapes of tunnel sections were experimented, where both crack initiating pressures and deformation behaviors around tunnels were investigated. The models with shallower pillar width showed shear failure of pillar according to the existing bedding planes and they were cracked under lower pressure than the models with thicker pillar width. In order to find the effect of tunnel sectional shape on stability, the models with four centered arch section, circular section and semi-circular arch section were experimented. As results of the comparison of the crack initiating pressures and the deformation behaviors around tunnels, the semi-circular arched tunnel model was the most unstable whereas the circular tunnel model was the most stable among them. Furthermore, the results of FLAC analysis were qualitatively coincident with the experimental results.

Case Study on the Tunnel Collapses during the Construction and Application of Geotechnical Investigation (터널 시공 중 지반 관련 사고 사례의 원인 분석과 지반 조사 결과의 활용에 관한 검토)

  • Park, Nam-Seo;Lee, Chi-Mun;Gang, Sang-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1998.04a
    • /
    • pp.47-60
    • /
    • 1998
  • It is considered in this paper that the main causes of tunnel collapse during the construction were the insufficiency of data of geotechnical investigations, or their limits due to special ground condition such as its heterogeneity and anisotropy It is thought that safety of ground can be affected by the geological conditions such as presences of discontinuities in good intact rocks, and considered to be necessary that awareness of the conditions of discontinuities in advance is important to apply adequate reinforcement measures. It is also shown that a serious accident had occurred because of the unawareness of the permeable alluvial deposits at the top of the tunnel. And it is shown that the example of application of the results of geotechnical investigation such as face-mapping, pilot boring etc. during tunnel construction, and a serious deformation of tunnel under special geological condition. Therefore, it is strongly recommended to perform an adequate geotechnical investigation to confirm the geotechnical conditons of ground before design, and supplimentary investigation is also needed depending on conditions for safe and econonic construction.

  • PDF

ASSESSMENT OF TUNNELLING-INDUCED BUILDING DAMAGE

  • Son, Moo-Rak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.86-95
    • /
    • 2010
  • Ground movements during tunnelling have the potential for major impact on nearby buildings, utilities and streets. The impacts on buildings are assessed by linking the magnitude of ground loss at the source of ground loss around tunnel to the lateral and vertical displacements on the ground surface, and then to the lateral strain and angular distortion, and resulting damage in the building. To prevent or mitigate the impacts on nearby buildings, it is important to understand the whole mechanism from tunnelling to building damage. This paper discusses tunneling-induced ground movements and their impacts on nearby buildings, including the importance of the soil-structure interactions. In addition, a building damage criterion, which is based on the state of strain, is presented and discussed in detail and the overall damage assessment procedure is provided for the estimation of tunnelling-induced building damage considering the effect of soil-structure interaction.

  • PDF

Determination of Memory Trap Distribution in Charge Trap Type SONOSFET NVSM Cells Using Single Junction Charge Pumping Method (Single Junction Charge Pumping 방법을 이용한 전하 트랩 형 SONOSFET NVSM 셀의 기억 트랩 분포 결정)

  • 양전우;흥순혁;박희정;김선주;서광열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.453-456
    • /
    • 1999
  • The Si-SiO$_2$interface trap and nitride bulk trap distribution of SONOSFET(polysilicon-oxide-nitride-oxide-semiconductor)NVSM(nonvolatile semiconductor memory) cell were investigated by single charge pumping method. The used device was fabricated by 0.35 7m standard logic fabrication including the ONO cell process. This ONO dielectric thickness is tunnel oxide 24 $\AA$, nitride 74 $\AA$, blocking oxide 25 $\AA$, respectively. Keeping the pulse base level in accumulation and pulsing the surface into inversion with increasing amplitudes, the charge pumping current flow from the single junction. Using the obtained I$_{cp}$-V$_{h}$ curve, the local V$_{t}$ distribution, doping concentration, lateral interface trap distribution and lateral memory trap distribution were extracted. The maximum N$_{it}$($\chi$) of 1.62$\times$10$^{19}$ /cm$^2$were determined.mined.d.

  • PDF

The influence of joints on compressive strength and deformation behavior of rock with a circular hole. (원형공을 갖는 암석의 압축강도 및 변형거동에 미치는 절리의 영향)

  • 조의권;김일중;김기주;김영석
    • Tunnel and Underground Space
    • /
    • v.7 no.2
    • /
    • pp.108-115
    • /
    • 1997
  • Uniaxial and biaxial compressive tests were conducted on limestone specimens containing artificial joints and a circular hole to investigate the influence of inclination and number of joints on compressive strength and deformation behavior of rock with a circular hole. Under uniaxial and biaxial compressive condition, the inclination of joints showing the maximum and minimum strength were 0$^{\circ}$ and 30$^{\circ}$ respectively, which was independent of the number of joints. Under uniaxial compressive condition, relative maximum strength of rock with n=1 and 3 to intact rock with a circular hole were 12.5%~82.8% and 11.4~62.5% respectively, and under biaxial compressive condition, 18.2~91.0% and 17.0~87.5% respectively. The influence of the number of joints on the decrease of compressive strength was greater under uniaxial than under biaxial compressive condition. Under uniaxial and biaxial compressive condition, axial and lateral deformations of rock showed the least values where $\alpha$=30$^{\circ}$. Under uniaxial compressive condition, axial and lateral deformation at maximum strength of rock have the increasing tendency with increase the number of joints. But they have the decreasing tendency under biaxial compressive condition. Under uniaxial and biaxial compressive conditions, axial deformation of circular hole was greater than lateral deformation without respect to the number of joints and the inclination of joints.

  • PDF

Running Safety Analysis of Railway Vehicle Systems for Ground Vibration (철도 차량의 지반진동에 의한 주행안전성 평가)

  • Choi, Jun-Sung;Jo, Man-Sup;Lee, Jin-Moo
    • Tunnel and Underground Space
    • /
    • v.16 no.4 s.63
    • /
    • pp.288-295
    • /
    • 2006
  • In this study, dynamic behavior of the vehicles is analyzed, while the track is subjected to lateral vibrations due to earthquake and blasting load. A computer program(WERIA, Wheel Rail Interaction Analysis) is used, which can simulate dynamic responses of vehicles subjected to lateral vibrations. The analysis considers two types of vehicles: I.e. power cars of KTX and Busan subway train. It can also consider the interaction with sub-structures such as tracks and soil. The creep force module is considered, and the running safety of railway vehicles subjected to earthquake and blasting loading is studied. Based on the results of this study, the running safety of the vehicles can be confirmed against lateral vibration.

Evaluation of Reinforcement Effect of Rock Bolts in Anisotropic Rock Mass Using Tunnel Scaled Model Tests (터널 축소모형실험을 통한 이방성 암반내 록볼트의 보강효과 검토)

  • Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.442-456
    • /
    • 2018
  • Scaled model tests were performed to evaluate the reinforcement effect of rock bolts in anisotropic rock mass. For this purpose, two tunnel cases were experimented which had different tunnel sizes, rock strengths, anisotropic angles and coefficients of lateral pressure. The fully grouted rock bolts of the D25 deformed bar were modeled as the basting pins with bead and were systematically installed at the roof and the side wall of the model tunnel. As results of the first case experimentations, the unsupported model showed initial crack at the roof of tunnel, but the supported model with rock bolts showed initial crack at the floor of tunnel where rock bolts were not installed. The crack initiating pressure and the maximum pressure of the supported model with rock bolts were 11% and 7% larger than those of the unsupported model, respectively. Moreover, the effect of the existing discontinuities in anisotropic rock mass on the fracture behavior of tunnel was reduced in the supported model, and so the reinforcement effect of rock bolt turned out to be experimentally verified. As results of the second case experimentations considering different support patterns, the crack initiating pressures of models were larger and the reduction ratios of tunnel area according to applied load were smaller as the length and the quantity of rock bolts were larger. Therefore, it was found that the performance of the rock bolts turned out to be improved as they were larger.

Reinforcement of shield tunnel diverged section with longitudinal member stiffness effect (종방향 부재의 강성효과를 고려한 쉴드 터널 분기부 보강 및 해석기법)

  • Lee, Gyu-Phil;Kim, Do
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.675-687
    • /
    • 2019
  • In recent years, the needs for double deck-tunnels have increased in large cities due to the increase in traffic volume and high land compensation costs. In Korea, a network type tunnel which is smaller than general road tunnels and crosses another tunnel underground is planned. In the shield tunnel joints between the existing shield tunnel and the box-type enlargement section, a partial steel-concrete joint is proposed where the bending moment is large instead of the existing full-section steel joint. In order to analysis the enlargement section of the shield tunnel diverged section to reflect the three-dimensional effect, the two-dimensional analysis model is considered to consider the column effect and the stiffness effect of the longitudinal member. A two-dimensional analysis method is proposed to reflect the stiffness of the longitudinal member and the column effect of the longitudinal point by considering the rigidity of the longitudinal member as the elastic spring point of the connecting part in the lateral model. As a result of the analysis of the model using the longitudinal member, it was considered that the structural safety of the partial steel-concrete joint can be secured by reducing the bending moment of the joint and the box member by introducing the longitudinal member having the stiffness equal to or greater than a certain value.