• Title/Summary/Keyword: Lateral Tunnel

Search Result 186, Processing Time 0.026 seconds

Second-look Arthroscopic Findings after ACL Reconstruction - The Changes around Graft - (전방 십자 인대 재건술후 2차 관절경 검사 소견 - 이식건 주위의 변화 -)

  • Hahn Sung-Ho;Yang Bo-Kyu;Yi Seung-Rim;Chung Shun-Wook;Hwang Hoon;Ko Dong-Oh;Kwon Gi-Doo
    • Journal of the Korean Arthroscopy Society
    • /
    • v.5 no.1
    • /
    • pp.13-16
    • /
    • 2001
  • Purpose : To evaluate the types of the fibrous scar formation around graft after ACL reconstruction. Materials and Methods : Between Nov 1997 and Jun. 1999, the second look arthroscopy was performed on 15 knees of 14 patients. We evaluated the changes around graft and measured the tunnel position that the tibial tunnel position as a percentage along the length of the tibial plateau from the anterior-to-posterior as seen on a lateral radiograph and the femoral tunnel position as a percentage along Blumensaat's line from anterior-to-posterior as seen on a lateral radiograph. Results : The tibial tunnel position was from $27\%\;to\;58\%(mean\;41\%)$ and the femoral tunnel position was from $58\%\;to\;83\%(mean\;76\%)$, so the tunnel position was ideal in almost cases. By arthroscopic findings, the grafts were not impinged in all cases and tile fibrous scar was formed between intercondylar notch and graft in almost cases except 3 cases. The types of fibrous scar formation were 6 cases of fibrillated fiber and 5 cases of fibrous nodule and 1 case of fibrous band. Conclusion : There was no impingement on graft in all cases and various types of fibrous scars were formed around grafts.

  • PDF

A development of the ground settlement evaluation chart on tunnel excavation (터널굴착에 따른 지반침하 예측을 위한 침하량 평가도표 개발)

  • Park, Chi Myeon;You, Kwang-Ho;Lee, Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1105-1123
    • /
    • 2018
  • The main risk factors of tunnel excavation through urban areas are ground settlement and surface sink which caused by ground conditions, excavation method, groundwater condition, excavation length, support method, etc. In the process of ground settlement assessment, the numerical analysis should be conducted considering the displacement and stress due to tunnel excavation. Therefore a technique that can simplify such process and easily evaluate the influence of tunnel excavation is needed. This study focused on the tunnelling-induced ground settlement which is main consideration of underground safety impact assessment. The parametric numerical analyses were performed considering such parameters as ground conditions, tunnel depth, and lateral distance from tunnel center line, etc. A simplified ground settlement evaluation chart was suggested by analyzing tendency of ground subsidence, lateral influence area and character by depth. The applicability of the suggested settlement evaluation chart was verified by comparative numerical analysis of settlement characteristics.

A Study on the Behaviour of a Single Pile to Adjacent Tunnelling Conducted in the Lateral Direction of the Pile (단독말뚝의 측면으로 시공되는 터널에 의한 말뚝의 거동 연구)

  • Lee, Cheolju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.41-50
    • /
    • 2011
  • Three-dimensional(3D) numerical analyses have been conducted to study the behaviour of a single pile to adjacent tunnelling conducted in the lateral direction of the pile. In the numerical analyses, the interaction between the tunnel, the pile and the soil next to the pile has been analysed. The study includes the pile settlement, the relative shear displacement between the pile and the soil, the shear stresses at the soil next to the pile and the axial force on the pile. In particular, the shear stress transfer mechanism along the pile related to the tunnel advancement has been rigorously analysed. Due to changes in the relative shear displacement between the pile and the soil next to the pile during the tunnel advancement, the shear stress and the axial force distributions along the pile have been changed. Downward shear stress developed above the tunnel springline (Z/L=0.0-0.7~0.8), while upward shear stress is mobilised below the tunnel springline (Z/L=0.7~0.8-1.0) resulting in compressive force on the pile, where Z is the pile location and L is the pile length. Maximum compressive force of about $0.475P_a$ was developed on the pile after completion of tunnel advancement, where $P_a$ is the allowable pile capacity. Some insights into the pile behaviour to tunnelling obtained from the numerical analyses will be reported and discussed.

Wind Tunnel Test of an Unmanned Aerial Vehicle (UAV)

  • Chung, Jin-Deog;Lee, Jang-Yeon;Sung, Bong-Zoo;Koo, Sa-Mok
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.776-783
    • /
    • 2003
  • A low speed wind tunnel test was conducted for full-scale model of an unmanned aerial vehicle (UAV) in Korea Aerospace Research Institute (KARI) Low Speed Wind Tunnel(LSWT). The purpose of the presented paper is to illustrate the general aerodynamic and performance characteristics of the UAV that was designed and fabricated in KARI. Since the testing conditions were represented minor portions of the load-range of the external balance system, the repeatability tests were performed at various model configurations to confirm the reliability of measurements. Variations of drag-polar by adding model components such as tails, landing gear and test boom are shown, and longitudinal and lateral aerodynamic characteristics after changing control surfaces such as aileron, flap, elevator and rudder are also presented. To explore aerodynamic characteristics of an UAV with model components build-up and control surface deflections, lift curve slope, pitching moment variation with lift coefficients and drag-polar are examined. The discussed results might be useful to understand the general aerodynamic characteristics and drag pattern for the given UAV configuration.

Suggestion of a Design Method for UAM (강관 다단 그라우팅 공법(UAM)의 설계법 제안)

  • 박이근;임종철
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.97-106
    • /
    • 2004
  • In case of tunnel construction with a shallow soil cover in cohesionless soils or highly weathered rocks, reinforcement measures are required for a tunnel stability during the tunnel construction. Recent developments show that the use of Umbrella Arch Method(UAM) as tunnel reinforcement and water cut-off in domestic projects has increased. Unfortunately, guidelines for the design and construction of UAM have not been established, only empirical designs and applications in tunnel construction have been performed so far. In this study, behaviour of the steel pipes installed on the tunnel roof was analyzed through the monitoring of bending and axial stresses of the pipes with the advance of the tunnel face. The monitoring results were used in the establishment of the loading mechanism around the pipe. This paper suggests, the guidelines used in the determination of the total length, overlapping length and lateral spacing of the reinforcing pipes obtained from the established loading mechanism.

Mid-term results of IntracardiacLateral Tunnel Fontan Procedure in the Treatment of Patients with a Functional Single Ventricle (기능적 단심실 환자에 대한 심장내 외측통로 폰탄술식의 중기 수술성적)

  • 이정렬;김용진;노준량
    • Journal of Chest Surgery
    • /
    • v.31 no.5
    • /
    • pp.472-480
    • /
    • 1998
  • We reviewed the surgical results of intracardiac lateral tunnel Fontan procedure for the repair of functional single ventricles. Between 1990 and 1996, 104 patients underwent total cavopulmonary anastomosis. Patients' age and body weight averaged 35.9(range 10 to 173) months and 12.8(range 6.5 to 37.8) kg. Preoperative diagnoses included 18 tricuspid atresias and 53 double inlet ventricles with univentricular atrioventricular connection and 33 other complex lesions. Previous palliative operations were performed in 50 of these patients, including 37 systemic to pulmonary artery shunts, 13 pulmonary artery bandings, 15 surgical atrial septectomies, 2 arterial switch procedures, 2 resections of subaortic conus, 2 repairs of total anomalous pulmonary venous connection and 1 Damus-Stansel-Kaye procedure. In 19 patients bidirectional cavopulmonary shunt operation was performed before the Fontan procedure and in 1 patient a Kawashima procedure was required. Preoperative hemodynamics revealed a mean pulmonary artery pressure of 14.6(range 5 to 28) mmHg, a mean pulmonary vascular resistance of 2.2(range 0.4 to 6.9) wood-unit, a mean pulmonary to systemic flow ratio of 0.9(range 0.3 to 3.0), a mean ventricular end-diastolic pressure of 9.0 (range 3.0 to 21.0) mmHg, and a mean arterial oxygen saturation of 76.0(range 45.6 to 88.0)%. The operative procedure consisted of a longitudinal right atriotomy 2cm lateral to the terminal crest up to the right atrial auricle, followed by the creation of a lateral tunnel connecting the orifices of either the superior caval vein or the right atrial auricle to the inferior caval vein, using a Gore-Tex vascular graft with or without a fenestration. Concomitant procedures at the time of Fontan procedure included 22 pulmonary artery angioplasties, 21 atrial septectomies, 4 atrioventricular valve replacements or repairs, 4 corrections of anomalous pulmonary venous connection, and 3 permanent pacemaker implantations. In 31, a fenestration was created, and in 1 an adjustable communication was made in the lateral tunnel pathway. One lateral tunnel conversion was performed in a patient with recurrent intractable tachyarrhythmia 4 years after the initial atriopulmonary connection. Post-extubation hemodynamic data revealed a mean pulmonary artery pressure of 12.7(range 8 to 21) mmHg, a mean ventricular end-diastolic pressure of 7.6(range 4 to 12) mmHg, and a mean room-air arterial oxygen saturation of 89.9(range 68 to 100) %. The follow-up duration was, on average, 27(range 1 to 85) months. Post-Fontan complications included 11 prolonged pleural effusions, 8 arrhythmias, 9 chylothoraces, 5 of damage to the central nervous system, 5 infectious complications, and 4 of acute renal failure. Seven early(6.7%) and 5 late(4.8%) deaths occured. These results proved that the lateral tunnel Fontan procedure provided excellent hemodynamic improvements with acceptable mortality and morbidity for hearts with various types of functional single ventricle.

  • PDF

A study on the Rock-support response behavior in tunnelling (터널링에 의한 암반-지보 반응거동에 관한 연구)

  • 백승한;문현구
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.321-331
    • /
    • 1998
  • A reliable analysis of tunnelling is needed to accomplish technically sound design and safe and economical construction. For the reliable analysis, a series of procedures of construction which include excavation and support stages must be considered. In this study, rock-support response behavior is studied and simulated in 2-D and 3-D finite element methods. Through the analysis of rock-support response behavior, the effects of the properties of shotcrete on the load distribution ratio can be quantified. The load distribution ratios for different rock types, different unsupported spans and various lateral earth pressure coefficients can be determined from the results of the 3-D finite element analysis. This load distribution ratios can be applied to a practical tunnel design through understanding of the trend of those various factors affecting the rock-support interaction.

  • PDF

Analysis of Ground Movements due to Tunnel Excavation Considering Ground Conditions, Excavation Characteristics, and Ground Layer Formations (지반조건, 굴착특성 및 지층구성을 고려한 터널굴착 유발 지반변위 거동분석)

  • Son, Moorak;Yun, Jongcheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5C
    • /
    • pp.239-250
    • /
    • 2009
  • Tunnelling-induced settlements and lateral ground movements have been investigated by numerical parametric studies considering ground condition, excavation characteristics, and ground layers. Before the numerical study the existing methods of ground movement estimation have been collected and analysed to have some information of ground movements and to improve them providing a fundamental material for the numerical study. Numerical model simulation has been performed of a physical model test of tunnel excavation in which the ground movements were measured reliably and the results have been used to determine the numerical approach and the appropriate soil constitutive mode. With this procedure done, the results of numerical parametric studies have been put together to analyze and understand tunnelling-induced settlements and lateral ground movements.

Anatomical Reconstruction of the Lateral Ankle Ligaments using Semitendinosus (반건양근 건을 이용한 족관절 외측 인대의 해부학적 재건)

  • Lee, Woo-Chun
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.7 no.1
    • /
    • pp.19-23
    • /
    • 2008
  • Purpose: Several methods of anatomical reconstruction for chronic lateral ankle instability has been reported to avoid the problems of nonanatomical reconstruction. Precise reconstruction of the normal anatomy is essential to the restoration of normal joint mechanics and stability. The problem with anatomical reconstruction is that it is very difficult to reconstruct the normal anatomic course of the ligaments. We thought making one tunnel at the fibular attachment of anterior talofibular ligament and calcaneofibular ligament was more anatomical than making separate tunnels for each ligaments because the two ligaments are contiguous. In this article, the basis of anatomical reconstruction of the lateral ankle ligaments was reviewed and a technique of reconstruction using semitendinosus was introduced.

  • PDF

3D LIDAR Based Vehicle Localization Using Synthetic Reflectivity Map for Road and Wall in Tunnel

  • Im, Jun-Hyuck;Im, Sung-Hyuck;Song, Jong-Hwa;Jee, Gyu-In
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.4
    • /
    • pp.159-166
    • /
    • 2017
  • The position of autonomous driving vehicle is basically acquired through the global positioning system (GPS). However, GPS signals cannot be received in tunnels. Due to this limitation, localization of autonomous driving vehicles can be made through sensors mounted on them. In particular, a 3D Light Detection and Ranging (LIDAR) system is used for longitudinal position error correction. Few feature points and structures that can be used for localization of vehicles are available in tunnels. Since lanes in the road are normally marked by solid line, it cannot be used to recognize a longitudinal position. In addition, only a small number of structures that are separated from the tunnel walls such as sign boards or jet fans are available. Thus, it is necessary to extract usable information from tunnels to recognize a longitudinal position. In this paper, fire hydrants and evacuation guide lights attached at both sides of tunnel walls were used to recognize a longitudinal position. These structures have highly distinctive reflectivity from the surrounding walls, which can be distinguished using LIDAR reflectivity data. Furthermore, reflectivity information of tunnel walls was fused with the road surface reflectivity map to generate a synthetic reflectivity map. When the synthetic reflectivity map was used, localization of vehicles was able through correlation matching with the local maps generated from the current LIDAR data. The experiments were conducted at an expressway including Maseong Tunnel (approximately 1.5 km long). The experiment results showed that the root mean square (RMS) position errors in lateral and longitudinal directions were 0.19 m and 0.35 m, respectively, exhibiting precise localization accuracy.