• Title/Summary/Keyword: Lateral Reticular Nucleus

Search Result 17, Processing Time 0.019 seconds

Distribution of Neurons in the Lateral Reticular Nucleus Projecting to Cervical, Thoracic, and Lumbar Segments , of the Spinal Cord in the Rat

  • Lee, Hyun Sook
    • Animal cells and systems
    • /
    • v.4 no.4
    • /
    • pp.353-359
    • /
    • 2000
  • Location of the neurons in the lateral reticular nucleus projecting to dorsal horn of the cervical, thoracic, or lumbar spinal cord was investigated in the rat using the technique of retrograde transport of horseradish peroxidase. The projection was bilateral with ipsilateral predominance. Neurons projecting to the cervical spinal cord were located near the medial, dorsal, and lateral perimeter of the magnocellular division of the lateral reticular nucleus, whereas cells projecting to the thoracic and lumbar spinal cord were localized in the medial and dorsal boundaries of the magnocellular division. The labeled neurons were distinctly multipolar in shape and measured approximately 10-15 $\mu m$ in their greatest transverse diameter. A few neurons were also observed in the subtrigeminal nucleus, whereas few cells were in the parbocellular division. These observations provide an anatomical substrate for the functional implication of the lateral reticular nucleus in the regulation of spinal nociceptive transmission and vascular hemodynamics via the descending pathway into the spinal cord.

  • PDF

Immunocytochemical Localization of Glutamatergic Neurons in the Lateral Reticular Nucleus Projecting to Ansiform (Crus I and II) and Paramedian Cerebellar Lobules of the Rat

  • Lee, Hyun-Sook
    • Animal cells and systems
    • /
    • v.2 no.1
    • /
    • pp.139-144
    • /
    • 1998
  • I examined the projection of glutamatergic neurons in the lateral reticular nucleus into ansiform (crus l and ll) and paramedian lobules in the rat cerebellum using immunocytochemical methods with antiserum against glutamate combined with WGA-HRP histochemistry. The projections of glutamatergic neurons from the lateral reticular nucleus to crus l were most extensive in number among the three injection cases and the majority of projections originated at the dorsal to dorsomedial region of the ipsilateral magnocellular nucleus. Glutamate-immunoreactive cells projecting to crus ll were less extensive in number than those projecting to crus l and were mainly localized at the dorsomedial portion of the ipsilateral magnocellular nucleus. Double-labelled neurons projecting to crus l or crux ll were also located at ipsilateral subtrigeminal as well as contralateral magnocellular nuclei. Glutamatergic neurons projecting to paramedian lobules were moderate in number and mainly located at the dorsal area of the ipsilateral magnocellular nucleus. A few double-labelled cells were also found at ipsilateral subtrigeminal or contralateral magnocellular nuclei. The present study suggests that glutamate-immunoreactive neurons at the dorsal to dorsomedial magnocellular division of the lateral reticular nucleus may participate in the excitatory control of target neuronal activities at ipsilateral, posterior hemispheric lobules of the rat cerebellum.

  • PDF

Morphological Studies on the Localization of Neurons Projecting to the Meridian Points Related to the Facial Nerve Paralysis in the Rat Using the Neural Tracers (신경추적자(神經追跡子)를 이용한 얼굴신경마비(神經痲痺)와 관련(關聯)된 혈(穴)들을 지배(支配)하는 신경세포체(神經細胞體)의 표식부위(標識部位)에 대(對)한 형태학적(形態學的) 연구(硏究))

  • Kim, Jum-Young;Lee, Sang-Ryoung;Lee, Chang-Hyun
    • The Journal of Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.58-71
    • /
    • 1997
  • In order to the location and local arrangement of nerve cell bodies and nerve fibers projecting to the meridian points related to facial nerve paralysis in the rat using the neural tracers, CTB and WGA-HRP, labeled neurons the were investigated by immunohistochemical and HRP histochemical methods following injection of 2.5% WGA-HRP and 1% CTB into Hyopko$(S_6)$. Chichang$(S_4)$, Sugu$(GV_{26})$, Sajukkong$(TE_{23})$ and Yangbaek$(G_{14})$. Following injection of Hyopko$(S_6)$, Chichang$(S_4)$, labeled motor neurons were founded in facial nucleus, trigeminal motor nucleus, reticular nucleus and hypoglossal nucleus. labeled sensory neurons were founded in trigeminal ganglia and $C_{1-2}$ spinal ganglia. sympathetic motor neurons were found in superior cervical ganglia. Sensory fibers labeled in brainstem were found in mesencephalic trigeminal tract, sensory root of trigeminal nerve, oral, interpolar and caudal part of trigeminal nucleus, area postrema, nucleus tractus solitarius, lateral reticular nucleus and $C_{1-2}$ spinal ganglia. Following injection of Sugu$(GV_{26})$, labeled motor neurons were founded in facial nucleus. Labeled sensory neurons were founded in trigeminal ganglia and $C_{1-2}$ spinal ganglia. Sympathetic motor neurons were found in superior cervical ganglia. Sensory fibers labeled in brainstem were found in spinal trigeminal tract, trigeminal motor nucleus, mesencephalic trigeminal tract, oral. interpolar and caudal parts of trigeminal nucleus, area postrema, nucleus tractus solitarius, lateral reticular nucleus, dorsal part of reticular part and $C_{1-2}$ spinal ganglia. Following injection of Sajukkong$(TE_{23})$ and Yangbaek$(G_{14})$, labeled motor neurons were founded in facial nucleus, trigeminal motor nucleus. Labeled sensory neurons were founded in trigeminal ganglia and $C_{1-2}$ spinal ganglia. sympathetic motor neurons were found in superior cervical ganglia. Sensory fibers labeled in brainstem were found in oral, interpolar and caudal parts of trigeminal nucleus, area postrema, nucleus tractus solitarius, inferior olovary nucleus, medullary reticular field and lamina I-IV of $C_{1-2}$ spinal cord. Location of nerve cell body and nerve fibers projecting to the meridian points related to the facial nerve paralysis in the rats were found in facial nucleus and trigeminal motor nucleus. Sensory neurone were found in trigeminal ganglia and $C_{1-2}$ spinal ganglia. Sympathetic motor neurons were found in superior cervical ganglia. Sensory fibers labeled in brainstem were found in mesencephalic trigeminal tract, oral, interpolar and caudal parts of trigeminal nucleus, area postrema, nucleus tractus solitarius. lateral reticular nucleus, medullary reticular field.

  • PDF

Central Localization of Facial Nerve and L14 related to the Large Intestine Meridian (수양명대장경(手陽明大腸經)과 관련(關聯)된 경혈(經穴)과 안면신경(顔面神經)의 표식영역(標識領域)에 관한 연구(硏究))

  • Park Woo-Soon;Lee Chang-Hyun;Lee Sang-Ryoung
    • Journal of Acupuncture Research
    • /
    • v.15 no.2
    • /
    • pp.117-133
    • /
    • 1998
  • The purpose of this morphological study was to investigate the relationship to facial nerve and LI4 related to the large intestine meridian. The common locations of the spinal cord and brain projecting to the LI4 and facial nerve were observed fallowing injection of transsynaptic neurotropic virus, pseudorabis virus(PRV), into the LI4 and facial nerve of the rat. After survival times of 96 hours following injection of PRV, the rats were perfused, and their spinal cord and brain were frozen sectioned(30${\mu}m$). These sections were stained by PRV immunohistochemical staining method, and observed with light microscope The results were as follows: 1. The PRV labeled spinal cord segments projecting to the LI4 and facial nerve were founded in cervical, thoracic, lumbar and sacral segments. Dense labeled areas of each spinal cord segment were founded in lamina IV, V, X, lateral spinal nucleus, intermediolateral nucleus and dorsal nucleus. 2. The PRV labeled medulla oblongata projecting to the LI4 and facial nerve were founded in the A1 noradrenalin cells/C1 adrenalin cells/caudoventrolateral reticular nucleus, rostroventrolateral reticular nucleus, medullary reticular nucleus, nucleus tractus solitarius, raphe obscurus nucleus, raphe pallidus nucleus, raphe magnus nucleus, gigantocellular nucleus, lateral paragigantocellular nucleus, and spinal trigeminal nucleus.

  • PDF

Neuroanatomical studies on the mechanism of scalp acupuncture therapy using the pseudorabies virus (Pseudorabies virus(PRV)를 이용한 두침(頭針) 치료(治療) 기전(機轉)에 대한 신경해부학(神經解剖學的) 연구(硏究))

  • Lee, Tae-Young;Lee, Chang-Hyun;Lee, Sang-Ryoung;Yuk, Sang-Won;Lee, Kwang-Gyu;Yuk, Tae-Han
    • Journal of Acupuncture Research
    • /
    • v.17 no.2
    • /
    • pp.261-276
    • /
    • 2000
  • 본 실험은 pseudorabies 바이러스 (PRV) 의 Bartha strain 을 안면신경의 측두지, 하지를 지배하는 신경 (좌골신경) 및 상지를 지배하는 신경 (요골, 척골, 정중신경) 에 주입한 후 4 일간의 생존시간이 경과한 후 척수와 뇌를 적출하여 동결절편을 제작한 후 면역조직화학적 염색기법과 X-gal 조직화학 염색법을 시행하여 염색된 신경세포체를 척수와 뇌에 투사된 공통영역을 관찰하고 두침의 영역중 하나인 운동구와 사지와의 관계에 대한 실험적 증거를 제시하고자 시행하였다. 위의 실험에서 얻어진 결과는 아래와 같다. 1. 안면신경의 측두지, 하지를 지배하는 신경 (좌골신경) 및 상지를 지배하는 신경 (요골, 측골, 정중신경) 에서 투사된 공통된 영역은 척수에서 경수의 층판 1-IV, 흉수의 intermediolateral nucleus(IML), dorsal nucleus(D) 및 층판 X, 요수의 층판 IV, V, 천수의 층판 IV, V, IX, X 등의 영역에서 관찰되었고, 뇌줄기에서는 caudoventrolateral reticular nucleus(CVL), nucleus solitary tract(Sol), rostroventrolateral nucleus(RVL), area postrema(AP), raphe nuclei(raphe pallidus, raphe obscurus, raphe magnus), inferior olivary nucleus 의 등쪽부분 (gigantocellular reticular nucleus, Gi), Kolliker-Fuse nucleus(KF), central gray(CG), dorsal raphe nucleus (DR) and A5 영역에 표지된다. 또한 paraventricular hypothalamic nucleus(PRV) 와 lateral hypothalamic reticular nucleus(LH)에서도 관찰되고 locus coeruleus(LC) 와 subcoeruleus nuc!eus(SubCA) 에서도 관찰된다.

  • PDF

Localization of the Neurons Projecting to the Gallbladder Meridian (족소양담경(足少陽膽經)에서 투사(投射)되는 신경원(神經元)의 표지부위(標識部位)에 대한 연구(硏究))

  • Ryuk Sang-Won;Lee Kwang-Gyu;Lee Sang-Ryoung;Kim Jum-Young;Lee Chang-Hyun;Lee Bong-Hee
    • Korean Journal of Acupuncture
    • /
    • v.17 no.1
    • /
    • pp.101-121
    • /
    • 2000
  • The purpose of this morphological studies was to investigate the relation to the meridian, acupoint and nerve. The common locations of the spinal cord and brain projecting to the the gallbladder, GB34 and common peroneal nerve were observed following injection of transsynaptic neurotropic virus, pseudorabies virus(PRV), into the gallbladder, GB34 and common peroneal nerve of the rabbit. After survival times of 96 hours following injection of PRV, the thirty rabbits were perfused, and their spinal cord and brain were frozen sectioned($30{\mu}m$). These sections were stained by PRV immunohistochemical staining method, and observed with light microscope. The results were as follows: 1. In spinal cord, PRV labeled neurons projecting to the gallbladder, GB34 and common peroneal nerve were founded in thoracic, lumbar and sacral spinal segments. Densely labeled areas of each spinal cord segment were founded in lamina V, VII, X, intermediolateral nucleus and dorsal nucleus. 2. In medulla oblongata, The PRV labeled neurons projecting to the gallbladder, GB34 and common peroneal nerve were founded in the A1 noradrenalin cells/C1 adrenalin cells/caudoventrolateral reticular nucleus, rostroventrolateral reticular nucleus, medullary reticular nucleus, dorsal motor nucleus of vagus nerve, nucleus tractus solitarius, raphe obscurus nucleus, raphe pallidus nucleus, raphe magnus nucleus, gigantocellular nucleus, lateral paragigantocellular nucleus, principal sensory trigeminal nucleus and spinal trigeminal nucleus. 3. In Pons, PRV labeled neurons were parabrachial nucleus, Kolliker-Fuse nucleus and cochlear nucleus. 4. In midbrain, PRV labeled neurons were founded in central gray matter and substantia nigra. 5. In diencephalon, PRV labeled neurons were founded in lateral hypothalamic nucleus, suprachiasmatic nucleus and paraventricular hypothalamic nucleus. 6. In cerebral cortex, PRV labeled neuron were founded in hind limb area.This results suggest that PRV labeled common areas of the spinal cord projecting to the gallbladder, GB34 and common peroneal nerve may be first-order neurons related to the somatic sensory, viscero-somatic sensory and symapathetic preganglionic neurons, and PRV labeled common area of the brain may be first, second and third-order neurons response to the movement of smooth muscle in gallbladder and blood vessels.These PRV labeled neurons may be central autonomic center related to the integration and modulation of reflex control linked to the sensory system monitoring the internal environment, including both visceral sensation and various chemical and physical qualities of the bloodstream. The present morphological results provide that gallbladder meridian and acupoint may be related to the central autonomic pathways.

  • PDF

The Projection from the Lateral Reticular Nucleus to the Cerebellar Vermal Lobule VI in the Rat: A Retrograde Labelling Study Using Horseradish Peroxidase (쥐의 외측 망상핵으로부터 소뇌충부 제6엽 내의 각 소엽으로 신경 경로에 관한 연구)

  • 이현숙
    • The Korean Journal of Zoology
    • /
    • v.39 no.1
    • /
    • pp.26-35
    • /
    • 1996
  • The projection from the lateral reticular nucleus (LRN) to three subdivisions of the cerebellar vermal lobule VI was studied in the rat by utilizing the retrograde transport of wheatgerm agglutinin-conjugated horseradish peroxidase. Labelled neurons were located bilaterally throughout the LRN, but with ipsilateral predominance. There seemed to be a dorsal4o-ventral transition in the ipsilateral magnocellular neurons projecting to the cerebellar vermal lobules VIa-to-Vic. In the contralateral side, cells projecting to vermal lobule Via were observed at more rostral sections, whereas those projecting to lobule Vic were located at caudal sections. There were relatively few labelled neurons in parvocellular or subtrigeminal divisions at either side. Computer-aided three dimensional reconstruction of LRN projections to lobules Via/Vib or lobules Vib/Vic exhibited extensive oberlap within each combination of injection cases.

  • PDF

Studies on the Relationship of the Central Neural Pathways to the Urinary Bladder and Wijung($BL_{40}$) (방광(膀胱)과 위중(委中)의 중추신경로와의 연계성에 관한 연구)

  • Lee, Chang-Hyun;Kim, Ho;Lee, Kwang-Gyu;Jeong, Han-Sol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.805-817
    • /
    • 2009
  • This study was to investigate central localization of neurons projecting to the urinary bladder and urinary bladder-related acupoints(Wijung, $BL_{40}$) and neurons of immunoreactive to hormones and hormone receptors regulating urinary bladder function by using peudorabies virus(PRV). In this experiment, Bartha's strain of pseudorabies virus was used in rats to trace central localization of urinary bladder-related neurons and urinary bladder-related acupoints($BL_{40}$) which can regulate urinary system. PRV was injected into the urinary bladder and acupoints($BL_{40}$) related urinary system. After six days survival of rats, mainly common labeled neurons projecting to the urinary bladder and urinary bladder-related acupoints were identified in spinal cord, medulla, pons and diencephalon by PRV immunohistochemical staining method. First-order PRV labeled neurons projecting to urinary bladder and urinary bladder-related acupoints were found in the cervical, thoracic, lumbar and sacral spinal cord. Commonly labeled preganglionic neurons were labeled in the lumbosacral spinal cord and thoracic spinal cord. They were found in the lateral horn area(sacral parasympathetic nucleus and intermediolateral nucleus), lamina V-X, intermediomedial nucleus and dorsal column area. The area of sensory neurons projecting to urinary bladder and Wijung($BL_{40}$) was L5-S2 spinal ganglia and T12-L1 spinal ganglia, respectively. In the brainstem, the neurons were labeled most evidently and consistently in the nucleus of tractus solitarius, area postrema, dorsal motor nucleus of vagus nerve, reticular nucleus, raphe nuclei(obscurus, magnus and pallidus), C3 adrenalin cells, parapyramidal area(lateral paragigantocellular nucleus), locus coeruleus, subcoeruleus nucleus, A5 cell group, Barrington's nucleus and periaqueductal gray matter. In the diencephalon, PRV labeled neurons were marked mostly in the paraventricular nucleus and a few ones were in the lateral hypothalamic nucleus, posterior hypothalamic nucleus, ventromedial hypothalamic nucleus, arcuate nucleus, median eminence, perifornical nucleus, periventricular nucleus and suprachiasmatic nucleus. In cerebral cortex, PRV labeled neurons were marked mostly in the frontal cortex, 1,2 area, hind limb area, agranular insular cortex. Immunoreactive neurons to Corticotropin releasiing factor(CRF), Corticotropin releasiing factor-receptor(CRF-R), c-fos and serotonin were a part of labeled areas among the virus-labeled neurons of urinary bladder and Wijung($BL_{40}$). The commonly labeled areas were nucleus tractus solitarius, area postrema, reticular nucleus, raphe nuclei(obscurus, magnus and pallidus), locus coeruleus, A5 cell group, Barrington,s nucleus, arcuate nucleus, paraventricular nucleus, frontal cortex 1, 2 area, hind limb, and perirhinal(agranular insular) cortex. These results suggest that overlapped CNS locations are related with autonomic nuclei which regulate the functions of urinary bladder-relate organs and it was revealed by tracing PRV labeled neurons projecting urinary bladder and urinary bladder-related acupoints. These commonly labeled areas often overlap with the neurons connected with hormones and hormone receptors related to urination.

Central Neural Pathways Projecting to the Acupoints B62 and K6 Using the Neural Tracer (신경추적자를 이용한 신맥과 조해에서 투사되는 신경원의 표지부위에 대한 연구)

  • Kim, Su-Hyun;Lee, Chang-Hyun;Yuk, Sang-Won;Lee, Kwang-Gyu;Lee, Tae-Young;Lee, Sang-Ryoung
    • Journal of Acupuncture Research
    • /
    • v.18 no.2
    • /
    • pp.51-66
    • /
    • 2001
  • The purpose of this morphological studies was to investigate the central neural pathway projecting to the acupoints $B_{62}$ and $K_6$ using the neuroanatomical method following injection of transsynaptic neurotropic virus, pseudorabies virus(PRV-Ba and PRV-Ga) into the $B_{62}$ and $K_6$. After survival times of 96 hours following injection into the twenty rats with PRV-Ba(Bartha strain) and PRV-Ga(Bartha strain, ${\beta}$-galacidodase insertion). They were perfused, and their spinal cord and brain were frozen sectioned($30{\mu}m$). These sections were stained by X-gal histochemical and PRV immunohistochemical staining method, and observed with light microscope. The results were as follows : 1. In spinal cord, overlaped PRV-Ba and PRV-Ga labeled neurons projecting to the $B_{62}$ and $K_6$ were founded in thoracic, lumbar and sacral spinal segments. In thoracic spinal segments, Densely labeled areas were founded in lamina IV, V, VII(intermediolateral nucleus) and X areas. In lumbar segemnts, labeled areas were founded in lamina II, IV, V and X areas. In sacral spinal segments, labeled areas were founded in lamina IV, V and VI areas. 2. In brain, overlaped PRV-Ba and PRV-Ga labeled neurons projecting to the $B_{62}$ and $K_6$ were founded in the $A_1$ noradrenalin cells/$C_1$ adrenalin cells/caudoventrolateral reticular nucleus, rostroventrolateral reticular nuclens, nucleus tractus solitarius, area postrema, raphe obscurus nucleus, raphe paltidus nucleus, raphe magnus nucleus, lateral paragigantoceltular nucleus, lateral rcticular nucleus, gigantocellular nucleus, locus coeruleus, subcoeruleus nucleus, motor trigeminal nucleus, Kolliker-Fuse nucleus, $A_5$ cell group, central gray matter, oculomotor nerve, paraventricular hypothalamic nucleus, median eminence, amygdaloid nucleus, frontal cortex, forelimb area, hindlimb area, 1, 2 areas of parietal cortex and granular and agranular cortex. This results were suggest that overlaped PRV-Ba and PRV-Ga labeled areas projecting to the $B_{62}$ and $K_6$ may be related to the emotional relay pathway in the central autonomic center.

  • PDF

Expression of neurotransmitter(CRF, CRF-R and CRF-BP) related to stress in stomach and zusanli in rats (백서의 위와 족삼리에서 스트레스 관련(CRF, CRF-R, CRF-BP) 신경전달물질의 발현에 대한 연구)

  • Lee, Chang-hyun;Kim, Yung-ho;Song, Beom-yong;Yook, Tae-han
    • Journal of Acupuncture Research
    • /
    • v.20 no.6
    • /
    • pp.89-102
    • /
    • 2003
  • Objective: The expression of CRF(corticotropin releasing factor), CRF-R(receptor) and CRF-BP(binding protein) in CNS neurons projecting to the stomach and ST36 using the pseudorabies virus in the rat was investigated. Methods: After survival times of 5 days following injection of PRV-Ba-Gal, The thirty rats were perfused, and their brain were frozen sectioned($30{\mu}m$). These sections were stained by PRV-Ba-Gal histochemical staining method and(or) CRF, CRF-R and CRF-BP immunohistochemical method. The common expressed areas of the brain projecting to the stomach and zusanli(ST36) following injection of PRV-Ba-Gal were observed with light microscope. Results: 1) The dense accumulation of CRF-immunoreactive terminals is seen in the area postrema, n. tractus solitarius, external zone of the median eminence, with some immunoreactive CRF also present in the internal zone. 2) Aggregates of CRF-R immunoreactive perikarya are found in area postrema, n. tractus solitarius, lateral reticular n., gigantocellular reticular n., locus coeruleues, paraventricular n. of hypothalamus, median eminence, preoptic n., arcuate n. and hind limb area of cerebral cortex. 3) Aggregates of CRF-BP immunoreactive perikarya are found in area postrema, n. tractus solitarius, lateral reticular nucleus, gigantocellular reticular n., locus coeruleues, paraventricular n. of hypothalamus, median eminence and arcuate n.. Conclusions : These results suggest that PRV-Ba-Gal labeled areas projecting to stomach and ST36 may be related to the central autonomic pathways. A part of CNS neurons projecting to the stomach and ST36 were related to expression of CRF, CRF-R and CRF-BP related to the stress in central autonomic center.

  • PDF