• 제목/요약/키워드: Lateral Movement

검색결과 745건 처리시간 0.033초

20대 여성의 신발종류에 따른 족저압 영역별 비교 연구 (A comparison study for mask plantar pressure measures to the difference of shoes in 20 female)

  • 김용재;지진구;김정태;홍준희;이중숙;이훈식;박승범
    • 한국운동역학회지
    • /
    • 제14권3호
    • /
    • pp.83-98
    • /
    • 2004
  • The purpose of this study was to investigate the test-retest of plantar pressures using the F-Scan system over speeds and plantar regions. 6 healthy female subjects in 20's were recruited for the study. Plantar pressure measurements during locomotor activities can provide information concerning foot function, particularly if the timing and magnitude of the loading profile can be related to the location of specific foot structures such as the metatarsal heads. The Tekscan F-Scan system consists of a flexible, 0.18mm thick sole-shape having 1260 pressure sensors, the sensor insole was trimmed to fit the subjects' right. left shoes - sneakers shoes & dress shoes. It was calibrated by the known weight of the test subject standing on one foot. The Tekscan measurements show the insole pressure distribution as a function of the time. This finding has important implications for the development of plantar pressure test protocols where the function of the forefoot is important. According to the result of analysis it is as follows 1) Center of force trajectory in women's dress shoes display direct movement, compare with center of force trajectory in Sneaker shoes displays a little bit curved slow pronation movement. Sneaker shoes in forefoot part display very quick supination movement, therefore, this shoes effects negative effectiveness for ankle's stability Considering center of force trajectory analyzing the more center of force close straight line, the more movement can be quick movement for locomotion. For foot pressure distribution, center of force trajectory in locomotion is better to curved trajectory with pronation movement. So sneaker shoes style is good shoes considering center of pressure distribution trajectory compare with women's dress shoes. 2) Women's dress shoes increased peak pressure in medial, this is effected by high hill's height. The more increased women's dress shoes's height, the more women's peak pressure will increase, pronation can increase compare with before. Supination movement increase, this focused pressure in lateral, also, supination increased more. If the supination movement increased, foot pressure focused in lateral, therefore, it is appeared force distribution in gait direction. This is bad movement in foot's stability. 3) Women's dress shoes in landing phase displayed a long time, this is when women's dress shoes wear, gait movement is unbalance, so, landing phase displayed a long time. For compensation in gait, swing phase quick movement. 4) Women's dress shoes displayed peak pressure distribution in lateral of rearfoot part, Sneakers shoes displayed peak pressure distribution in medial of forefoot part. Its results has good impact absorption compare with women's dress shoes. In forefoot part, sneakers shoes has good propulsive force compare with women's dress shoes.

악간고정 제거후 개구장애 환자에게 적용한 능동적 하악운동의 효과: 비무작위 대조군 설계 (Effects of Active Mandibular Exercise for Mouth Opening Limitation Patients after Maxillomandibular Fixation Release: A Non-Randomized Controlled Trial)

  • 장효진;김명희
    • 대한간호학회지
    • /
    • 제48권1호
    • /
    • pp.26-37
    • /
    • 2018
  • Purpose: The aim of this study was to evaluate the effects of active mandibular exercise (AME) in patients with limited mouth opening after maxillomandibular fixation (MMF) release. Methods: The study used a quasi-experimental, nonequivalent control group and a pre test-post test design. Sixty-two patients with Maxillomandibular Fixation Release were assigned to the experimental (n=31) or control group (n=31). The AME was performed in the experimental group for 4 weeks. The exercise AME consisted of maximal mouth opening, lateral excursion and protrusive movement. These movements were repeated ten times a day. After the final exercise of the day, the number of tongue blades used for mouth opening was noted. The effect of AME was evaluated after MMF release at different time intervals: a) immediately, b) after 1 week, c) after 2 weeks, d) after 4 weeks, and e) after 12 weeks. The exercise was assessed using the following criteria: a) mandibular movements, b) pain scores associated with maximal mouth opening, c) discomfort scores associated with range of movement, and d) daily life activities that involve opening the mouth. Results: The experimental group showed significant improvement regarding the range of mandibular movements (maximal mouth opening (F=23.60, p<.001), lateral excursion to the right side (F=5.25, p=.002), lateral excursion to the left side (F=5.97, p=.001), protrusive movement (F=5.51, p=.001)), pain score (F=39.59, p<.001), discomfort score (F=9.38, p<.001). Daily life activities that involve opening the mouth were more favorable compared to those in the control group. Conclusion: The AME in patients after MMF release is helpful for increasing mandibular movement range, decreasing pain and discomfort, and improving day life activities that involve opening the mouth. Therefore, AME is highly recommended as an effective nursing intervention.

Phosphate Number and Acyl Chain Length Determine the Subcellular Location and Lateral Mobility of Phosphoinositides

  • Cho, Hana;Kim, Yeon A;Ho, Won-Kyung
    • Molecules and Cells
    • /
    • 제22권1호
    • /
    • pp.97-103
    • /
    • 2006
  • Phosphoinositides are critical regulators of ion channel and transporter activity. There are multiple isomers of biologically active phosphoinositides in the plasma membrane and the different lipid species are non-randomly distributed. However, the mechanism by which cells impose selectivity and directionality on lipid movements and so generate a non-random lipid distribution remains unclear. In the present study we investigated which structural elements of phosphoinositides are responsible for their subcellular location and movement. We incubated phosphatidylinositol (PI), phosphatidylinositol 4-monophosphate (PI(4)P) and phosphatidylinositol 4,5-bisphosphate ($PI(4,5)P_2$) with short or long acyl chains in CHO and HEK cells. We show that phosphate number and acyl chain length determine cellular location and translocation movement. In CHO cells, $PI(4,5)P_2$ with a long acyl chain was released into the cytosol easily because of a low partition coefficient whereas long chain PI was released more slowly because of a high partition coefficient. In HEK cells, the cellular location and translocation movement of PI were similar to those of PI in CHO cells, whereas those of $PI(4,5)P_2$ were different; some mechanism restricted the translocation movement of $PI(4,5)P_2$, and this is in good agreement with the extremely low lateral diffusion of $PI(4,5)P_2$. In contrast to the dependence on the number of phosphates of the phospholipid head group of long acyl chain analogs, short acyl chain phospholipids easily undergo translocation movement regardless of cell type and number of phosphates in the lipid headgroup.

측두악관절 잡음자의 수평면상 하악 편위 운동에 관한 연구 (A STUDY ON THE MANDIBULAR ECCENTRIC MOVEMENT OF THE SUBJECTS WITH TMJ CLICK IN HORIZONTAL PLANE)

  • 나경선;강동완
    • 대한치과보철학회지
    • /
    • 제31권2호
    • /
    • pp.237-248
    • /
    • 1993
  • Although pantograph has been used to investigate whether the determinents of the mandibular movement were possible contributing factors of TMJ click, there was the problems to understand the role of tooth morphology upon the occurrence of click because of using appliance without tooth contacts. There Were advantages to evaluate the effects of tooth morphology upon the mandibular movements, because intraoral tracing device(Functiograph$^{(R)}$) had been obtained maintaining occlusal contact between the upper and lower natural teeth during mandibular movement. The purpose of this study was to record the mandibular eccentric movement quantitatively performed in 20 adult control subjects and 20 adult subjects with TMJ click and to investigate the effects of occlusion upon the occurrence of TMJ click. The obtained results were as follows : 1. The average ICP-P distance was $3.07{\pm}0.73mm$ in subjects with TMJ click, $2.14{\pm}0.85mm$ in control subjects. There was a statistical significance between subjects with TMJ click and control subjects(P<0.001). 2. The average ICP-P distance was $3.07{\pm}1.14mm$ in subjects with TMJ click, $2.61{\pm}0.96mm$ in control subjects. There was a statistical significance between subjects with TMJ click and control subjects(P<0.05). 3. The average distance of right and left lateral movement was not statistically significant between subjects with TMJ click and control subjects. 4. The average lateral displacement from midline during RCP was $0.75{\pm}0.54mm$ subjects with TMJ click, $0.16{\pm}0.17mm$ in control subjects. There was a statistical significance between subjects with TMJ click and control subjects(P<0.001). 5. The average lateral displacement from midline during protrusive movement was $0.88{\pm}0.54mm$ in subjects with TMJ click, $0.20{\pm}0.23mm$ in control subjects. There was a statistical significance between subjects with TMJ click and control subjects(P<0.001). 6. The average angle of right and left lateral movement was $144.2{\pm}20.20^{\circ}$ in subjects with TMJ click, $138.15{\pm}20.09^{\circ}$ in control subjects. There was a statistical significance between subjects with TMJ click and control subjects(P<0.05).

  • PDF

Response of passively loaded pile groups - an experimental study

  • Al-abboodi, Ihsan;Sabbagh, Tahsin Toma;Al-salih, Osamah
    • Geomechanics and Engineering
    • /
    • 제20권4호
    • /
    • pp.333-343
    • /
    • 2020
  • Preventing or reducing the damage impact of lateral soil movements on piled foundations is highly dependent on understanding the behavior of passive piles. For this reason, a detailed experimental study is carried out, aimed to examine the influence of soil density, the depth of moving layer and pile spacing on the behavior of a 2×2 free-standing pile group subjected to a uniform profile of lateral soil movement. Results from 8 model tests comprise bending moment, shear force, soil reaction and deformations measured along the pile shaft using strain gauges and others probing tools were performed. It is found that soil density and the depth of moving layer have an opposite impact regarding the ultimate response of piles. A pile group embedded in dense sand requires less soil displacement to reach the ultimate soil reaction compared to those embedded in medium and loose sands. On the other hand, the larger the moving depth, the larger amount of lateral soil movement needs to develop the pile group its ultimate deformations. Furthermore, the group factor and the effect of pile spacing were highly related to the soil-structure interaction resulted from the transferring process of forces between pile rows with the existing of the rigid pile cap.

Crabbing Motion Testing of Waterjet-Powered Ships Using Stern Thrusters

  • Joopil Lee;Seung-Ho Ham
    • 한국해양공학회지
    • /
    • 제38권1호
    • /
    • pp.10-17
    • /
    • 2024
  • This study assessed the potential for crabbing motion in waterjet ships by exclusively employing stern thrusters. The theoretical considerations were validated through practical sea trials on the naval vessel PKG (Patrol Killer Guided missile) equipped with three stern thrusters. The control forces were calculated using the force equilibrium equation. The results showed that the hull exhibited rotations and lateral movements under wind influence. The port tail exhibited a leftward turning tendency due to the wind. This phenomenon arises from the dominance of the rotational force generated by the stern thruster over the lateral force exerted by the hull, making it challenging to maintain force equilibrium. In the sea trial, the hull rotated by 10° and moved 10.8 m laterally, with a longitudinal movement of 0.26 m. Remarkably, the lateral movement surpassed the longitudinal displacement, indicating the success of the trial. The substantial lateral travel distance provided tangible evidence that the crabbing motion of the ship is achievable using only stern thrusters. This study contributes valuable insights into enhancing the maneuverability of waterjet ships, offering practical applications for naval operations and maritime activities.

런닝화의 경도 차이가 후족 제어 및 충격력에 미치는 영향 분석 (An Effect Analysis of Rearfoot Movement and Impact force by Different Design of Running Shoes Hardness)

  • 이동춘;이우창
    • 한국산업경영시스템학회:학술대회논문집
    • /
    • 한국산업경영시스템학회 2002년도 춘계학술대회
    • /
    • pp.291-296
    • /
    • 2002
  • The midsole hardness of athletic footwear affects capability of absorbing impact shock and controls rearfoot movement during running and walking. The prior studies were focused on examining the proper hardness of footwear for rearfoot movement or to finding effective hardness for absorbing impact shock. The displacements of maximal Achilles tendon angle described a amount of pronation motion is decreased when medial hardness of midsole is large more than lateral. Increasing hardness of footwear midsole are effected to reduce maximum and intial pronation angle, but declined the ability of impact shock during heelstrike. For determination of effectiveness hardness of midsole, therefore, the study that makes a compromise between rearfoot movement and absorbing impact during footstrike must be performed. The purpose of this study is to examine quantitative values of rearfoot control and absorbing impact shock with different hardness of medial and lateral midsole on heel portion. The results are useful to define biomechanical hardness of midsole for developing running shoes. As variable for impact shock, accelerations onto shank and knee are measured during 4 running speeds (5, 7, 9, 11km/h). Also, maximum and $10\%$ pronation angle (Achilles tendon angle) were measured using high-speed camera.

  • PDF

Electromyographic Analysis of Lower Extremity Lateral Stabilizer During Upper Extremity Elevation Movements

  • Jung, Ho-Bal
    • 국제물리치료학회지
    • /
    • 제1권2호
    • /
    • pp.185-191
    • /
    • 2010
  • Background: This study investigated effective posture for gluteus medius rehabilitation training and effects of isometric muscle activity by electrophysiology through EMG while performing dynamic isotonic behavior of weight placed differently on upper limbs. Method: 16 healthy male subjects 20 to 29 years of age volunteered for the study. Lateral stabilizer right gluteus medius activity was assessed using EMG while the right lower extremity maintains single limb support, and the left upper extremity elevation movement maintains 5 seconds without load, 1RM to 1 repetition, 5RM to 5 times, 10RM to 10 times, 5RM and 10RM maintain 5sec. Results: Comparison of the mean value of EMG data showed a statistically more significant difference in upper extremity elevation movement on opposite upper extremity added weight than one that was not added on a single limb weight bearing posture(p>.05). Weight supported side gluteus medius activity for 1RM, 5RM, 10RM weight difference and movement repetition did not differ(p>.05). Comparison in maximum value showed statistically significant differences in not adding weight on upper limb elevation exercise and 1RM, 5RM, 10RM repeated behavior. Elevation behavior and repetition appeared over 70% of MVIC. Conclusion: Unilateral weight bearing stance added weight in the opposite upper limb elevation movement was an indirect exercise to effectively stimulate gluteus medius activity. Applying various added weight will have effective exercise on the early stages of rehabilitation because activity gluteus medius did not differ through added weight.

  • PDF

형상비 및 지반특성에 따른 교대 강관파일의 변위특성에 대한 해석적 연구 (Analytical Investigation on the Deflection Characteristics of Steel Piles in Bridge Abutment for Aspect Ratio and Ground Properties)

  • 장갑철;장경호;한중근;이양규;김종렬
    • 한국공간구조학회논문집
    • /
    • 제7권4호
    • /
    • pp.73-78
    • /
    • 2007
  • 연약지반에서 측방 유동에 의해 주변 지반에 큰 변형을 일으키며 이로 인하여 말뚝기초에 손상을 입히게 된다. 이러한 경우 설치된 말뚝을 수동말뚝이라 하며 편재하중이 작용하게 되고 이로 인해 측방토압을 받게 되며 측방변위가 발생하여 상부구조물에 영향을 미치게 된다. 그러나 국내의 경우 이러한 말뚝과 교대 변위간의 관계에 대한 예측 및 메커니즘에 대한 연구가 부족한 실정이다. 본 연구에서는 교대이동에 대한 해석을 위해 입체, 판 및 프레임 요소를 복합적으로 해석할 수 있는 연성 3차원 유한요소해석 프로그램을 개발하였다. 개발된 연성해석 프로그램을 이용하여 연약지반상 형상비(두께-지름비, t/D비)를 변수로 한 교대강관파일의 변형특성을 명확히 하였다.

  • PDF