• Title/Summary/Keyword: Latent variable.

Search Result 201, Processing Time 0.026 seconds

A multivariate latent class profile analysis for longitudinal data with a latent group variable

  • Lee, Jung Wun;Chung, Hwan
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.1
    • /
    • pp.15-35
    • /
    • 2020
  • In research on behavioral studies, significant attention has been paid to the stage-sequential process for multiple latent class variables. We now explore the stage-sequential process of multiple latent class variables using the multivariate latent class profile analysis (MLCPA). A latent profile variable, representing the stage-sequential process in MLCPA, is formed by a set of repeatedly measured categorical response variables. This paper proposes the extended MLCPA in order to explain an association between the latent profile variable and the latent group variable as a form of a two-dimensional contingency table. We applied the extended MLCPA to the National Longitudinal Survey on Youth 1997 (NLSY97) data to investigate the association between of developmental progression of depression and substance use behaviors among adolescents who experienced Authoritarian parental styles in their youth.

Gene Expression Pattern Analysis via Latent Variable Models Coupled with Topographic Clustering

  • Chang, Jeong-Ho;Chi, Sung Wook;Zhang, Byoung Tak
    • Genomics & Informatics
    • /
    • v.1 no.1
    • /
    • pp.32-39
    • /
    • 2003
  • We present a latent variable model-based approach to the analysis of gene expression patterns, coupled with topographic clustering. Aspect model, a latent variable model for dyadic data, is applied to extract latent patterns underlying complex variations of gene expression levels. Then a topographic clustering is performed to find coherent groups of genes, based on the extracted latent patterns as well as individual gene expression behaviors. Applied to cell cycle­regulated genes of the yeast Saccharomyces cerevisiae, the proposed method could discover biologically meaningful patterns related with characteristic expression behavior in particular cell cycle phases. In addition, the display of the variation in the composition of these latent patterns on the cluster map provided more facilitated interpretation of the resulting cluster structure. From this, we argue that latent variable models, coupled with topographic clustering, are a promising tool for explorative analysis of gene expression data.

A Stagewise Approach to Structural Equation Modeling (구조식 모형에 대한 단계적 접근)

  • Lee, Bora;Park, Changsoon
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.1
    • /
    • pp.61-74
    • /
    • 2015
  • Structural equation modeling (SEM) is a widely used in social sciences such as education, business administration, and psychology. In SEM, the latent variable score is the estimate of the latent variable which cannot be observed directly. This study uses stagewise structural equation modeling(stagewise SEM; SSEM) by partitioning the whole model into several stages. The traditional estimation method minimizes the discrepancy function using the variance-covariance of all observed variables. This method can lead to inappropriate situations where exogenous latent variables may be affected by endogenous latent variables. The SSEM approach can avoid such situations and reduce the complexity of the whole SEM in estimating parameters.

Latent class analysis with multiple latent group variables

  • Lee, Jung Wun;Chung, Hwan
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.2
    • /
    • pp.173-191
    • /
    • 2017
  • This study develops a new type of latent class analysis (LCA) in order to explain the associations between one latent variable and several other categorical latent variables. Our model postulates that the prevalence of the latent variable of interest is affected by another latent variable composed of other several latent variables. For the parameter estimation, we propose deterministic annealing EM (DAEM) to deal with local maxima problem in the proposed model. We perform simulation study to demonstrate how DAEM can find the set of parameter estimates at the global maximum of the likelihood over the repeated samples. We apply the proposed LCA model in an investigation of the effect of and joint patterns for drug-using behavior to violent behavior among US high school male students using data from the Youth Risk Behavior Surveillance System 2015. Considering the age of male adolescents as a covariate influencing violent behavior, we identified three classes of violent behavior and three classes of drug-using behavior. We also discovered that the prevalence of violent behavior is affected by the type of drug used for drug-using behavior.

Asymptotic Test for Dimensionality in Probabilistic Principal Component Analysis with Missing Values

  • Park, Chong-sun
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.1
    • /
    • pp.49-58
    • /
    • 2004
  • In this talk we proposed an asymptotic test for dimensionality in the latent variable model for probabilistic principal component analysis with missing values at random. Proposed algorithm is a sequential likelihood ratio test for an appropriate Normal latent variable model for the principal component analysis. Modified EM-algorithm is used to find MLE for the model parameters. Results from simulations and real data sets give us promising evidences that the proposed method is useful in finding necessary number of components in the principal component analysis with missing values at random.

Estimating Average Causal Effect in Latent Class Analysis (잠재범주분석을 이용한 원인적 영향력 추론에 관한 연구)

  • Park, Gayoung;Chung, Hwan
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.7
    • /
    • pp.1077-1095
    • /
    • 2014
  • Unlike randomized trial, statistical strategies for inferring the unbiased causal relationship are required in the observational studies. Recently, new methods for the causal inference in the observational studies have been proposed such as the matching with the propensity score or the inverse probability treatment weighting. They have focused on how to control the confounders and how to evaluate the effect of the treatment on the result variable. However, these conventional methods are valid only when the treatment variable is categorical and both of the treatment and the result variables are directly observable. Research on the causal inference can be challenging in part because it may not be possible to directly observe the treatment and/or the result variable. To address this difficulty, we propose a method for estimating the average causal effect when both of the treatment and the result variables are latent. The latent class analysis has been applied to calculate the propensity score for the latent treatment variable in order to estimate the causal effect on the latent result variable. In this work, we investigate the causal effect of adolescents delinquency on their substance use using data from the 'National Longitudinal Study of Adolescent Health'.

Latent causal inference using the propensity score from latent class regression model (잠재범주회귀모형의 성향점수를 이용한 잠재변수의 원인적 영향력 추론 연구)

  • Lee, Misol;Chung, Hwan
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.5
    • /
    • pp.615-632
    • /
    • 2017
  • Unlike randomized trial, statistical strategies for inferring the unbiased causal relationship are required in the observational studies. The matching with the propensity score is one of the most popular methods to control the confounders in order to evaluate the effect of the treatment on the outcome variable. Recently, new methods for the causal inference in latent class analysis (LCA) have been proposed to estimate the average causal effect (ACE) of the treatment on the latent discrete variable. They have focused on the application study for the real dataset to estimate the ACE in LCA. In practice, however, the true values of the ACE are not known, and it is difficult to evaluate the performance of the estimated the ACE. In this study, we propose a method to generate a synthetic data using the propensity score in the framework of LCA, where treatment and outcome variables are latent. We then propose a new method for estimating the ACE in LCA and evaluate its performance via simulation studies. Furthermore we present an empirical analysis based on data form the 'National Longitudinal Study of Adolescents Health,' where puberty as a latent treatment and substance use as a latent outcome variable.

PoMEN based Latent One-Class SVM (PoMEN 기반의 Latent One-Class SVM)

  • Lee, Changki
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.8-11
    • /
    • 2012
  • One-class SVM은 데이터가 존재하는 영역을 추출하고, 이 영역을 서포트 벡터로 표현하며 표현된 영역 밖의 데이터들은 아웃라이어(outlier)로 간주된다. 본 논문에서는 데이터 포인트마다 숨겨진 변수(hidden variable) 혹은 토픽이 있다고 가정하고, 이를 반영하기 위해 PoMEN에 기반한 Latent One-class SVM을 제안한다. 실험결과 Latent One-class SVM이 대부분의 구간에서 One-class SVM 보다 성능이 높았으며, 특히 높은 정확율을 요구하는 경우에 더욱 효과적임을 알 수 있었다.

  • PDF

Latent Variable Fit to Interlaboratory Studies

  • Jeon, Gyeongbae
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.3
    • /
    • pp.885-897
    • /
    • 2000
  • The use of an unweighted mean and of separate tests is part of the current practice for analyzing interlaboratory studies, and we hope to improve on this method. We fit, using maximum likelihood(ML), a rather intricate, multi-parameter measurement model with the material's true value as a latent variable in a situation where quite serviceable regression and ANOVA calculations have already been developed. The model fit leads to both a weighted estimate of he overall mean, and to tests for equality of means, slopes and variances. Maximum likelihood tests for difference among variances poses a challenge in that the likelihood can easily becoem unbounded. Thus the major objective become to provide a useful test of variance equality.

  • PDF

Bayesian Approach for Determining the Order p in Autoregressive Models

  • Kim, Chansoo;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.777-786
    • /
    • 2001
  • The autoregressive models have been used to describe a wade variety of time series. Then the problem of determining the order in the times series model is very important in data analysis. We consider the Bayesian approach for finding the order of autoregressive(AR) error models using the latent variable which is motivated by Tanner and Wong(1987). The latent variables are combined with the coefficient parameters and the sequential steps are proposed to set up the prior of the latent variables. Markov chain Monte Carlo method(Gibbs sampler and Metropolis-Hasting algorithm) is used in order to overcome the difficulties of Bayesian computations. Three examples including AR(3) error model are presented to illustrate our proposed methodology.

  • PDF