• Title/Summary/Keyword: Latent faults

Search Result 3, Processing Time 0.018 seconds

Fault-Tolerant Corrective Control for Non-fundamental Mode Faults in Asynchronous Sequential Machines (비동기 순차 머신의 비-기본모드에서 발생하는 고장 극복을 위한 교정 제어)

  • Yang, Jung-Min;Kwak, Seong Woo
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.727-734
    • /
    • 2020
  • Fault tolerant corrective control for asynchronous sequential machines (ASMs) with transient faults is discussed in this paper. The considered ASM is vulnerable to a kind of faults whose manifestation may arise during transient transitions of the ASM, leading to transient faults occurring in non-fundamental mode. To overcome adverse effects caused by these faults, we present a novel corrective control scheme that can detect and tolerate transient faults in non-fundamental mode. The existence condition and design algorithm for an appropriate fault tolerant controller is addressed in the framework of corrective control theory. The applicability of the proposed control methodology is demonstrated in the FPGA experiment.

THE FORMATION MECHANISM OF GROWN-IN DEFECTS IN CZ SILICON CRYSTALS BASED ON THERMAL GRADIENTS MEASURED BY THERMOCOUPLES NEAR GROWTH INTERFACES

  • Abe, Takao
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1999.06a
    • /
    • pp.187-207
    • /
    • 1999
  • The thermal distributions near the growth interface of 150mm CZ crystals were measured by three thermocouples installed at the center, middle (half radius) and edge (10m from surface) of the crystals. The results show that larger growth rates produced smaller thermal gradients. This contradicts the widely used heat flux balance equation. Using this fact, it si confirmed in CZ crystals that the type of point defects created is determined by the value of the thermal gradient (G) near the interface during growth, as already reported for FZ crystals. Although depending on the growth systems the effective lengths of the thermal gradient for defect generation are varied, were defined the effective length as 10mm from the interface in this experiment. If the G is roughly smaller than 20C/cm, vacancy rich CZ crystals are produced. If G is larger than 25C/cm, the species of point defects changes dramatically from vacancies to interstitial. The experimental results which FZ and CZ crystals are detached from the melt show that growth interfaces are filled with vacancy. We propose that large G produces shrunk lattice spacing and in order to relax such lattice excess interstitial are necessary. Such interstitial recombine with vacancies which were generated at the growth interface, next occupy interstitial sites and residuals aggregate themselves to make stacking faults and dislocation loops during cooling. The shape of the growth interface is also determined by the distributions of G across the interface. That is, the small G and the large G in the center induce concave and convex interfaces to the melt, respectively.

  • PDF

An Quality Management Effort Estimation Model Based on Defect Filtering Concept (결점 필터링 개념 기반 품질관리 노력 추정 모델)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.6
    • /
    • pp.101-109
    • /
    • 2012
  • To develop high quality software, quality control plan is required about fault correction that is latent within software. We should describe fault correction profile properly for this. The tank and pipe model performs complex processes to calculate fault that is remove and escapes. Also, we have to know in which phase the faults were inserted, removed and escaped and know the fault detection rate at any phases. To simplify such complex process, this paper presented model to fault filtering concept. Presented model has advantage that can describe fault more shortly because need not to consider whether was involved in fault that escaped fault is inserted at any step at free step. Also, presented effort estimating model that do fetters in function of fault removal quality and productivity measure and is required in fault detection.